3,212 research outputs found

    Argus® II Retinal Prosthesis System: Clinical & Functional Outcomes

    Get PDF
    Developing artificial visual systems to restore sight in blind patients has long been the dream of scientists, clinicians and the public at large. After decades of research, the greatest success in the field has been achieved with electronic retinal prostheses. To date, 3 retinal prosthetic systems have made the transition from laboratory / clinical research to entering the commercial market for clinical use, namely the Argus® II Retinal Prosthesis System (Second Sight), the alpha-IMS system (Retinal Implant AG), and the IRIS® II (Pixium Vision). The following body of work describes the Argus® II Retinal Prosthesis system, which obtained regulatory approval in the European Economic Area in 2011 (CE marking) and later on in the USA (FDA approval in February 2013), based on the results of an international multi-centre clinical feasibility trial (Clinical Trial identifier: NCT 00407602). This thesis aims to examine the long-term clinical and functional outcomes in an early cohort of subjects chronically implanted with the Argus® II system, from the original feasibility study. A further aim is to elucidate the characteristics of the artificial vision that is perceived and its long-term repeatability and reproducibility in individual subjects. These two broad aims will assist in understanding the nature of the visual performance provided by this device, as well as to add to the current data that is defining the feasibility of constructing predictable pixelated patterns to achieve useful artificial vision in the future. Finally, we explored the feasibility of real-time imaging of visual cortex activation in response to electrical retinal stimulation with the Argus® II system, using functional near infra-red spectroscopy (fNIRS). Development of this real-time imaging tool will enable future investigations into the differences in the cortical activities in response to different stimulations and in different subjects. This may in turn help us understand the variability in their visual performance, as well as to further explore the extent and effect of cross-modal plasticity at the cortical level, in this cohort of patients who have been deprived of visual inputs for decades. Visual function was assessed in terms of: a) form recognition and b) spatial localisation under both 2-dimensional (2D) screen-based laboratory settings and 3-dimensional (3D) paradigms simulating real-life settings. A prospective study of 11 Argus® II subjects showed that the subjects could identify distinct geometric shapes presented in high contrast better with the prosthetic system switched on (median % of correct identification = 20.0%, IQR = 18.8), versus off (median = 12.5%, IQR = 5.0). The accuracy of shapes identification could be further improved by enhancing the outlines of the geometric shape (median = 33.1%, IQR = 21.6). A further prospective study from a subset of 7 subjects showed that this 2D shape identification could be translated into improved identification of 3D objects. These subjects could identify 8 common daily-life objects presented in high contrast with the prosthetic system switched on (median = 31.3%, IQR = 20.3) versus off (median = 12.5%, IQR = 12.5). Scrambling of the transmission signals within the prosthetic system in order to separate light information from form information (i.e. “scrambled mode”) hindered the identification in some but not all subjects (median = 25.0%, IQR = 12.5). The accuracy of object identification could also be improved by enhancing the edges of objects (median = 43.8%, IQR = 15.6). Previously published data showed that Argus® II subjects were able to locate and point to white squares presented on touch screens against a black background more accurately with the prosthetic system switched on versus off. We demonstrated with a prospective study of 5 subjects that they could localise an object on the table, reach out and grasp the object (prehension) with great accuracy (66.7 – 100%) when the prosthetic system was switched on, versus no object prehension (0%) with the system switched off. A prospective study of 6 Argus® II subjects illustrated that while there was a wide variation in the shape and size of the phosphenes perceived by individual subjects, the elicited phosphenes were consistently reproducible in each subject using fixed stimulating parameters, with inter-stimuli intervals ranging from 20 minutes apart, down to 1 second. The perceived location of the phosphenes grossly matched retinotopic agreement, with 4 subjects drawing phosphenes in the same visual field quadrant as predicted by the relative stimulus-fovea position, and 2 subjects depicting phosphenes in the same hemi-field as the expected locations. A retrospective study of 3 Argus® II subjects who underwent MRI brain scan (for unrelated medical reasons) showed that MRI brain scans of up to 1.5 Tesla field strength appeared to have no detrimental effect on the subjects and their implant function. The Argus® II implant produced an artefact of around 50mm x 50mm in size which would prevent visualisation of structures within the orbit, but visualisation of surrounding tissues outside this areas are unaffected. The use of functional MRI as a tool of exploring visual cortex activation in Argus® II subjects was discounted, due to concerns of signal interference from the radiofrequency telemetry of Argus® II system with that of MRI. Subsequently, we have demonstrated in a prospective study that an alternative neuro-imaging technique, functional near infra-red spectroscopy (fNIRS), was capable of capturing real-time cortical activation in 5 out of 6 Argus® II subjects, and maybe a feasible tool for future investigation into cortical function and interactions. The work in this thesis has shown that the Argus® II retinal prosthesis system could improve visual function both in terms of form recognition, as well as object localisation in 3D in situations simulating real-life settings, in a cohort of patients with end-stage retinitis pigmentosa or other outer retinal diseases such as choroideremia. The wide variation in the visual performance level observed could in part be attributable to the diversity in the phosphene features perceived by these subjects. Nevertheless, the consistency and reproducibility with which these phosphenes could be elicited, with fixed stimulating parameters within each subject, provides an encouraging basis for the construction of more complicated pixelated images. Future work to determine the underlying factors influencing the perceived phosphene characteristics, may allow for better prediction of functional outcome, which could in turn be useful for patient selection and tailored preoperative counselling. For those subjects already implanted with the Argus® II system, future work into determining the suitable stimulating parameters for each electrode / quad stimulation may be required for individual subjects, to achieve the construction of optimised and useful, pixelated prosthetic vision

    Case study on user knowledge and design knowledge in product form design

    Get PDF
    2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Genotypic characterization of C. glabrata after exposure to fluconazole

    Get PDF
    published_or_final_versio

    Principle demonstration of the phase locking based on the electro-optic modulator for Taiji space gravitational wave detection pathfinder mission

    Get PDF
    Weak-light phase locking is a key technology for Taiji space gravitational wave detection and its pathfinder mission. Previously, the phase locking was achieved by a complicated technique, which controls the frequency of the laser via a piezo-electric actuator (kHz range or more) and a temperature actuator (sub-Hz range). We propose an easy phase-locking strategy, which is based on the electro-optic modulator (EOM). Compared with the traditional way, this strategy only needs to modulate the driven voltage of the EOM, and the frequency bandwidth can cover all ranges. An experiment is also established to prove the feasibility of the method. The results show that the noises are &lt;80 mu rad/Hz(1/2) in frequencies from 0.2 to 1 Hz, and the thermal drift is the main noise source in our recent system. (C) 2018 Society of Photo-Optical Instrumentation Engineers (SPIE)</p

    Fluconazole exposure induces genotypic and phenotypic changes in Candida glabrata

    Get PDF
    published_or_final_versio

    Stability of Mine Car Motion in Curves of Invariable and Variable Radii

    Get PDF
    We discuss our experiences adapting three recent algorithms for maximum common (connected) subgraph problems to exploit multi-core parallelism. These algorithms do not easily lend themselves to parallel search, as the search trees are extremely irregular, making balanced work distribution hard, and runtimes are very sensitive to value-ordering heuristic behaviour. Nonetheless, our results show that each algorithm can be parallelised successfully, with the threaded algorithms we create being clearly better than the sequential ones. We then look in more detail at the results, and discuss how speedups should be measured for this kind of algorithm. Because of the difficulty in quantifying an average speedup when so-called anomalous speedups (superlinear and sublinear) are common, we propose a new measure called aggregate speedup

    In-Plane Orbital Texture Switch at the Dirac Point in the Topological Insulator Bi2Se3

    Full text link
    Topological insulators are novel macroscopic quantum-mechanical phase of matter, which hold promise for realizing some of the most exotic particles in physics as well as application towards spintronics and quantum computation. In all the known topological insulators, strong spin-orbit coupling is critical for the generation of the protected massless surface states. Consequently, a complete description of the Dirac state should include both the spin and orbital (spatial) parts of the wavefunction. For the family of materials with a single Dirac cone, theories and experiments agree qualitatively, showing the topological state has a chiral spin texture that changes handedness across the Dirac point (DP), but they differ quantitatively on how the spin is polarized. Limited existing theoretical ideas predict chiral local orbital angular momentum on the two sides of the DP. However, there have been neither direct measurements nor calculations identifying the global symmetry of the spatial wavefunction. Here we present the first results from angle-resolved photoemission experiment and first-principles calculation that both show, counter to current predictions, the in-plane orbital wavefunctions for the surface states of Bi2Se3 are asymmetric relative to the DP, switching from being tangential to the k-space constant energy surfaces above DP, to being radial to them below the DP. Because the orbital texture switch occurs exactly at the DP this effect should be intrinsic to the topological physics, constituting an essential yet missing aspect in the description of the topological Dirac state. Our results also indicate that the spin texture may be more complex than previously reported, helping to reconcile earlier conflicting spin resolved measurements

    Ge/Si interdiffusion in the GeSi dots and wetting layers

    Get PDF
    The Ge/Si interdiffusion in GeSi dots grown on Si (001) substrate by gas-source molecular beam epitaxy is investigated. Transmission electron microscopy images show that, after annealing, the aspect ratio of the height to base diameter increases. Raman spectra show that the Si-Ge mode redshifts and the intensity of the local Si-Si mode increases with the increase of annealing temperature, which suggests the Ge/Si interdiffusion during annealing. The photoluminescence peaks from the dots and the wetting layers show blueshift due to the atomic intermixing during annealing. The interdiffusion thermal activation energies of GeSi dots and the wetting layers are 2.16 and 2.28 eV, respectively. The interdiffusion coefficient of the dots is about 40 times higher than that of wetting layers and the reasons were discussed. (C) 2001 American Institute of Physics

    Interactions in vivo between the Vif protein of HIV-1 and the precursor (Pr55GAG) of the virion nucleocapsid proteins

    Get PDF
    The abnormality of viral core structure seen in vif-defective HIV-1 grown in PBMCs has suggested a role for Vif in viral morphogenesis. Using an in vivo mammalian two-hybrid assay, the interaction between Vif and the precursor (Pr55GAG) of the virion nucleocapsid proteins has been analysed. This revealed the amino-terminal (aa 1–22) and central (aa 70–100) regions of Vif to be essential for its interaction with Pr55GAG, but deletion of the carboxy-terminal (aa 158–192) region of the protein had only a minor effect on its interaction. Initial deletion studies carried out on Pr55GAG showed that a 35-amino-acid region of the protein bridging the MA(p17)–CA(p24) junction was essential for its ability to interact with Vif. Site-directed mutagenesis of a conserved tryptophan (Trp21) near the amino terminus of Vif showed it to be important for the interaction with Pr55GAG. By contrast, mutagenesis of the highly conserved YLAL residues forming part of the BC-box motif, shown to be important in Vif promoting degradation of APOBEC3G/3F, had little or no effect on the Vif–Pr55GAG interaction

    A Statistical Model for Estimating Maternal-Zygotic Interactions and Parent-of-Origin Effects of QTLs for Seed Development

    Get PDF
    Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs) that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants
    corecore