1,249 research outputs found

    Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system

    Get PDF
    © 2015. An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water

    An anaerobic membrane bioreactor – membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants

    Get PDF
    © 2018 In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3–0.5 L/g CODadded biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation

    Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal

    Get PDF
    © 2016 This study systematically compares the performance of osmotic membrane bioreactor – reverse osmosis (OMBR-RO) and conventional membrane bioreactor – reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation

    Resource recovery from wastewater by anaerobic membrane bioreactors: Opportunities and challenges

    Get PDF
    © 2018 This review examines the potential of anaerobic membrane bioreactor (AnMBR) to serve as the core technology for simultaneous recovery of clean water, energy, and nutrient from wastewater. The potential is significant as AnMBR treatment can remove a board range of trace organic contaminants relevant to water reuse, convert organics in wastewater to biogas for subsequent energy production, and liberate nutrients to soluble forms (e.g. ammonia and phosphorus) for subsequent recovery for fertilizer production. Yet, there remain several significant challenges to the further development of AnMBR. These challenges evolve around the dilute nature of municipal wastewater, which entails the need for pre-concentrating wastewater prior to AnMBR, and hence, issues related to salinity build-up, accumulation of substances, membrane fouling, and membrane stability. Strategies to address these challenges are proposed and discussed. A road map for further research is also provided to guide future AnMBR development toward resource recovery

    Biomimetic aquaporin membranes for osmotic membrane bioreactors: Membrane performance and contaminant removal

    Get PDF
    © 2017 Elsevier Ltd In this study, we investigated the performance of an osmotic membrane bioreactor (OMBR) enabled by a novel biomimetic aquaporin forward osmosis (FO) membrane. Membrane performance and removal of 30 trace organic contaminants (TrOCs) were examined. Results show that the aquaporin FO membrane had better transport properties in comparison with conventional cellulose triacetate and polyamide thin-film composite FO membranes. In particular, the aquaporin FO membrane exhibited much lower salt permeability and thus smaller reverse salt flux, resulting in a less severe salinity build-up in the bioreactor during OMBR operation. During OMBR operation, the aquaporin FO membrane well complemented biological treatment for stable and excellent contaminant removal. All 30 TrOCs selected here were removed by over 85% regardless of their diverse properties. Such high and stable contaminant removal over OMBR operation also indicates the stability and compatibility of the aquaporin FO membrane in combination with activated sludge treatment

    An Osmotic Membrane Bioreactor-Membrane Distillation System for Simultaneous Wastewater Reuse and Seawater Desalination: Performance and Implications

    Get PDF
    © 2017 American Chemical Society. In this study, we demonstrate the potential of an osmotic membrane bioreactor (OMBR)-membrane distillation (MD) hybrid system for simultaneous wastewater reuse and seawater desalination. A stable OMBR water flux of approximately 6 L m-2 h-1 was achieved when using MD to regenerate the seawater draw solution. Water production by the MD process was higher than that from OMBR to desalinate additional seawater and thus account for draw solute loss due to the reverse salt flux. Amplicon sequencing on the Miseq Illumina platform evidenced bacterial acclimatization to salinity build-up in the bioreactor, though there was a reduction in the bacterial community diversity. In particular, 18 halophilic and halotolerant bacterial genera were identified with notable abundance in the bioreactor. Thus, the effective biological treatment was maintained during OMBR-MD operation. By coupling biological treatment and two high rejection membrane processes, the OMBR-MD hybrid system could effectively remove (>90%) all 30 trace organic contaminants of significant concern investigated here and produce high quality water. Nevertheless, further study is necessary to address MD membrane fouling due to the accumulation of organic matter, particularly protein- and humic-like substances, in seawater draw solution

    A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment

    Get PDF
    Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors can achieve higher and more consistent micropollutant removal. However, regardless of what technology is employed, the removal of micropollutants depends on physico-chemical properties of micropollutants and treatment conditions. The evaluation of micropollutant removal from municipal wastewater should cover a series of aspects from sources to end uses. After the release of micropollutants, a better understanding and modeling of their fate in surface water is essential for effectively predicting their impacts on the receiving environment. © 2013 Elsevier B.V

    Effects of sulphur on the performance of an anaerobic membrane bioreactor: Biological stability, trace organic contaminant removal, and membrane fouling

    Get PDF
    © 2017 This study investigated the impact of sulphur content on the performance of an anaerobic membrane bioreactor (AnMBR) with an emphasis on the biological stability, contaminant removal, and membrane fouling. Removal of 38 trace organic contaminants (TrOCs) that are ubiquitously present in municipal wastewater by AnMBR was evaluated. Results show that basic biological performance of AnMBR regarding biomass growth and the removal of chemical oxygen demand (COD) was not affected by sulphur addition when the influent COD/SO42− ratio was maintained higher than 10. Nevertheless, the content of hydrogen sulphate in the produced biogas increased significantly and membrane fouling was exacerbated with sulphur addition. Moreover, the increase in sulphur content considerably affected the removal of some hydrophilic TrOCs and their residuals in the sludge phase during AnMBR operation. By contrast, no significant impact on the removal of hydrophobic TrOCs was noted with sulphur addition to AnMBR

    Removal and fate of micropollutants in a sponge-based moving bed bioreactor

    Get PDF
    This study investigated the removal of micropollutants using polyurethane sponge as attached-growth carrier. Batch experiments demonstrated that micropollutants could adsorb to non-acclimatized sponge cubes to varying extents. Acclimatized sponge showed significantly enhanced removal of some less hydrophobic compounds (log. D<. 2.5), such as ibuprofen, acetaminophen, naproxen, and estriol, as compared with non-acclimatized sponge. The results for bench-scale sponge-based moving bed bioreactor (MBBR) system elucidated compound-specific variation in removal, ranging from 25.9% (carbamazepine) to 96.8% (β-Estradiol 17-acetate) on average. In the MBBR system, biodegradation served as a major removal pathway for most compounds. However, sorption to sludge phase was also a notable removal mechanism of some persistent micropollutants. Particularly, carbamazepine, ketoprofen and pentachlorophenol were found at high concentrations (7.87, 6.05 and 5.55. μg/g, respectively) on suspended biosolids. As a whole, the effectiveness of MBBR for micropollutant removal was comparable with those of activated sludge processes and MBRs. © 2014 Elsevier Ltd

    Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor

    Full text link
    © 2018 Elsevier Ltd This study aims to investigate the production of volatile fatty acids (VFAs) from low strength wastewater at various hydraulic retention time (HRT) and organic loading rate (OLR) in a continuous anaerobic membrane bioreactor (AnMBR) using glucose as carbon source. This experiment was performed without any selective inhibition of methanogens and the reactor pH was maintained at 7.0 ± 0.1. 48, 24, 18, 12, 8 and 6 h-HRTs were applied and the highest VFA concentration was recorded at 8 h with an overall VFA yield of 48.20 ± 1.21 mg VFA/100 mg COD feed . Three different ORLs were applied (350, 550 and 715 mg COD feed ) at the optimum 8 h-HRT. The acetic and propanoic acid concentration maximums were (1.1845 ± 0.0165 and 0.5160 ± 0.0141 mili-mole/l respectively) at 550 mg COD feed . The isobutyric acid concentration was highest (0.3580 ± 0.0407 mili-mole/l) at 715 mg COD feed indicating butyric-type fermentation at higher organic loading rate
    • …
    corecore