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ABSTRACT 17 

In this study, we demonstrate the potential of an osmotic membrane bioreactor (OMBR) – 18 

membrane distillation (MD) hybrid system for simultaneous wastewater reuse and seawater 19 

desalination. A stable OMBR water flux of approximately 6 L m
-2 

h
-1

 was achieved when using 20 

MD to regenerate the seawater draw solution. Water production by the MD process was higher 21 

than that from OMBR to desalinate additional seawater and thus account for draw solute loss due 22 

to the reverse salt flux. Amplicon sequencing on the Miseq Illumina platform evidenced bacterial 23 

acclimatization to salinity build-up in the bioreactor, though there was a reduction in the 24 

bacterial community diversity. In particular, 18 halophilic and halotolerant bacterial genera were 25 

identified with notable abundance in the bioreactor. Thus, the effective biological treatment was 26 

maintained during OMBR–MD operation. By coupling biological treatment and two high 27 

rejection membrane processes, the OMBR–MD hybrid system could effectively remove (> 90%) 28 

all 30 trace organic contaminants of significant concern investigated here and produce high 29 

quality water. Nevertheless, further study is necessary to address MD membrane fouling due to 30 

the accumulation of organic matter, particularly protein- and humic-like substances, in seawater 31 

draw solution. 32 

TOC Art 33 

 34 
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INTRODUCTION 35 

Wastewater reuse and seawater desalination are reliable and pragmatic options to augment 36 

water supply.
1-3

 Wastewater effluent reuse is also a cost-effective approach for environmental 37 

protection.
2
 Therefore, significant efforts have been dedicated to develop new as well as to 38 

improve existing technologies for wastewater reuse and seawater desalination. 39 

Osmotic membrane bioreactor (OMBR), which integrates forward osmosis (FO) with a 40 

biological treatment process, has recently been proposed for advanced wastewater treatment and 41 

reuse.
4-8

 In OMBR, water is transported from the mixed liquor into a highly concentrated draw 42 

solution, with osmotic pressure difference between these two solutions as the driving force. 43 

Compared to conventional MBR using either microfiltration or ultrafiltration, OMBR has several 44 

advantages, including lower membrane fouling propensity, higher fouling reversibility, and 45 

better product water quality.
8, 9

 There is also evidence that OMBR can increase the removal of 46 

trace organic contaminants (TrOCs) of significant concern, especially biologically persistent 47 

compounds, in comparison with conventional MBR.
10

 48 

Salinity build-up in the bioreactor is an inherent problem associated with OMBR due to the 49 

high salt rejection by the FO membrane and the reverse salt flux from the draw solution.
8, 9

 50 

Salinity build-up can increase the osmotic pressure in the mixed liquor side and thus reduce the 51 

effective driving force for water diffusion. More importantly, salinity build-up can alter biomass 52 

characteristics and biological community, thereby deteriorating the biological performance of 53 

OMBR.
11, 12

 It has been recently hypothesized that the bacterial population may acclimatize to 54 

the salinity increase by the proliferation of halotolerant or halophilic bacteria.
10, 13

 However, to 55 

date, this hypothesis has not been systematically evaluated and verified. 56 

For water reuse applications, an additional process, such as reverse osmosis (RO) or 57 

membrane distillation (MD), can be integrated with OMBR to regenerate the draw solution and 58 

produce clean water. Recent studies have demonstrated the robust performance of the OMBR–59 

RO hybrid system for wastewater treatment and reuse.
10, 14-16

 Compared to conventional MBR–60 

RO, OMBR can prevent the downstream RO process from severe membrane fouling and thus 61 

maintain the system sustainability.
10

 MD is a thermally driven process, where water is 62 

transported as vapor under a partial vapor pressure gradient from a high temperature solution, 63 

through a microporous, hydrophobic membrane, to a low temperature solution. MD can 64 
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completely reject non-volatile substances.
17

 In addition, MD performance is not significantly 65 

affected by the feed water salinity, rendering it as a promising process for the desalination of 66 

highly saline streams.
18

 As a result, MD is potentially viable to regenerate draw solutions for 67 

OMBR. 68 

Little is known about the performance of the OMBR–MD hybrid system for wastewater 69 

treatment and reuse. Nguyen et al.
19, 20

 reported that the MD process could successfully 70 

regenerate the diluted draw solution within six hours of batch operation when integrated with 71 

either attached growth biofilm-OMBR or sponge biocarrier-OMBR. Shahzad et al.
21

 72 

subsequently optimized the MD process to continuously recover diluted draw solutions for 73 

OMBR. However, MD and OMBR experiments were conducted separately and the performance 74 

of the OMBR–MD hybrid system was not evaluated in these studies.  75 

OMBR integrated with either RO or MD can potentially be deployed for simultaneous 76 

wastewater reuse and seawater desalination. This concept is inspired by recently reported FO–77 

RO systems using seawater as the draw solution. In these systems, the FO process was used to 78 

purify impaired water for seawater dilution, thereby increasing the water recovery and reducing 79 

the specific energy consumption of seawater desalination by the RO process.
22-25

 Nevertheless, 80 

there has been very little research work on the performance of OMBR using seawater as the draw 81 

solution. Compared to RO, MD performance is not affected by the feed osmotic pressure and 82 

thus can be a better option to integrate with OMBR for simultaneous wastewater reuse and 83 

seawater desalination, particularly when waste heat or solar energy is readily available. 84 

In this study, we investigate the overall performance of an OMBR–MD hybrid system for 85 

simultaneous wastewater reuse and seawater desalination. The performance was systematically 86 

assessed in terms of water production, contaminant removal, and membrane fouling. Removal 87 

mechanisms of TrOCs in the hybrid system were elucidated. In addition, 16S rRNA gene 88 

sequencing on the MiSeq Illumina platform was performed to reveal the evolution of the 89 

bacterial community in the bioreactor during OMBR–MD operation. 90 

MATERIALS AND METHODS 91 

Wastewater and Seawater. A synthetic wastewater solution was used in this study to 92 

avoid the interference of indigenous microbes from real wastewater in investigating the evolution 93 

of the bacterial community with salinity build-up in the bioreactor. The synthetic wastewater was 94 
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prepared daily to obtain 100 mg/L glucose, 100 mg/L peptone, 17.5 mg/L KH2PO4, 17.5 mg/L 95 

MgSO4, 17.5 mg/L CaCl2, 10 mg/L FeSO4, 225 mg/L CH3COONa, and 35 mg/L urea to 96 

represent moderate strength municipal wastewater. Seawater was collected from Wollongong 97 

beach (New South Wales, Australia) and filtered through 0.45 µm filter papers before using as 98 

the draw solution in the OMBR–MD system. Key physicochemical properties of the synthetic 99 

wastewater and seawater are summarized in Table S1 of the Supporting Information (SI).  100 

FO and MD Membranes. A flat-sheet, thin-film composite FO membrane from Hydration 101 

Technology Innovations (Albany, OR) was used in OMBR. The FO membrane consisted of a 102 

thin, selective polyamide active layer on top of a porous polysulfone supporting layer. A 103 

microporous, hydrophobic membrane from Porous Membrane Technology (Ningbo, China) was 104 

used for MD. The MD membrane was composed of a thin polytetrafluorethylene (PTFE) active 105 

layer and a polypropylene supporting layer. Key properties of the FO and MD membranes are 106 

given in Table S2 of the SI. 107 

Trace Organic Contaminants (TrOCs). A stock solution containing 25 µg/mL of each of 108 

30 TrOCs was prepared in pure methanol and stored at -18 °C in the dark. These 30 compounds 109 

were selected to represent chemicals of emerging concern that occur ubiquitously in municipal 110 

wastewater.
26

 The stock solution was introduced daily into the synthetic wastewater to achieve a 111 

concentration of 5 µg/L of each compound. Key physicochemical properties of the 30 112 

compounds are summarized in Table S3 of the SI.  Based on their Log D values (i.e., effective 113 

octanol-water partition coefficient) at solution pH 8, the 30 TrOCs could be grouped as 114 

hydrophilic (Log D < 3.2) and hydrophobic (Log D > 3.2).
27

 115 

OMBR–MD System. The lab-scale OMBR–MD hybrid system used in this study consisted 116 

of a glass bioreactor, a submerged, plate-and-frame FO membrane cell, a direct contact MD 117 

(DCMD) membrane cell, feeding and circulating pumps, solution reservoirs, and temperature 118 

control equipment (Figure 1). A Masterflex peristaltic pump (Cole-Parmer, Vernon Hills, IL) 119 

controlled by a water level sensor was used to feed wastewater into the bioreactor. A wastewater 120 

reservoir was placed on a digital balance (Mettler-Toledo, Hightstown, IL), which was connected 121 

with a computer to determine the OMBR water flux. The bioreactor was placed in a water bath to 122 

maintain the mixed liquor temperature at 25 ± 1 °C using a temperature controller (Neslab RTE7, 123 

Waltham, MA) equipped with a stainless steel heat exchanger coil (Figure S1, SI).  124 
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[Figure 1] 125 

The FO membrane cell was made of acrylic plastic. A draw solution channel was engraved in 126 

the acrylic block with a length, width, and depth of 20, 15, and 0.4 cm, respectively. The FO 127 

membrane with an effective area of 300 cm
2
 was mounted on the cell with the supporting layer 128 

in contact with the draw solution (i.e., FO mode). A gear pump (Micropump, Vancouver, WA) 129 

was used to circulate seawater from a stainless steel reservoir to the membrane cell at a cross-130 

flow velocity of 2.8 cm/s. 131 

The MD membrane cell was also made of acrylic plastic to minimize heat loss and consisted 132 

of two identical semi-cells engraved for the feed and distillate channels. Each channel was 14.2 133 

cm long, 9.1 cm wide, and 0.3 cm deep. A diamond-patterned, polypropylene (PP) spacer (1.65 134 

mm spacer, GE Osmonics) was placed in each semi-cell. Two gear pumps (Micropump, 135 

Vancouver, WA) were used to circulate co-currently the feed (i.e., seawater) and distillate to the 136 

membrane cell at a cross-flow velocity of 6.1 cm/s. Seawater fed to MD was heated to 40 ± 1 °C 137 

in a stainless steel heat exchanger coil using a proportional-integral-derivative regulator heater 138 

(Neslab RTE7, Thermo Scientific, USA). Another temperature controller (Neslab RTE7, 139 

Waltham, MA) was used to maintain the distillate temperature at 20 ± 1 °C. A digital balance 140 

connected to a computer was used to weigh excess distillate to determine the MD water flux. 141 

Since the water production of MD was independent of that of OMBR, an additional seawater 142 

reservoir controlled by a float valve was set to maintain the working volume of the draw solution 143 

at 10 L.  144 

Experimental Protocol. The OMBR–MD hybrid system was continuously operated for 40 145 

days in a temperature-controlled room (22 ± 1 °C). Activated sludge seeded to OMBR was 146 

obtained from a lab-scale MBR, which had been stabilized for over three months. The initial 147 

mixed liquor suspended solids (MLSS) concentration was adjusted to approximately 6 g/L. The 148 

bioreactor with a working volume of 5 L was continuously aerated to achieve dissolved oxygen 149 

(DO) concentration of more than 2 mg/L. The sludge retention time (SRT) was maintained at 20 150 

days by periodic sludge withdrawal. The hydraulic retention time (HRT) was determined by the 151 

OMBR water flux and was in the range of 30 – 40 hours. This HRT range was higher than that of 152 

a typical MBR due to the low FO water flux. No membrane cleaning was conducted throughout 153 

the experiment. 154 
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Water Quality Analyses. Aqueous samples were collected weekly for TrOC analysis 155 

according to a method previously described by Hai et al.
28

 Briefly, this method involved solid 156 

phase extraction, derivatization, and quantification by a gas chromatography–mass spectrometry 157 

system (QP5000, Shimadzu, Kyoto). TrOC removals by biological treatment, OMBR, and the 158 

OMBR–MD hybrid system were determined based on mass balance (Section S1, SI). 159 

Contributions of the FO and MD membranes toward TrOC removal in the hybrid system were 160 

quantified by their observed rejections, which were the removal difference between bioreactor 161 

and OMBR, and that between OMBR and OMBR–MD, respectively (Section S1, SI). 162 

Basic water quality parameters were also measured. Total organic carbon (TOC) and total 163 

nitrogen (TN) were detected by a TOC/TN analyzer (TOC-VCSH, Shimadzu, Kyoto). Ammonium 164 

(NH4
+
) and orthophosphate (PO4

3-
) were analyzed by a Flow Injection Analysis system 165 

(QuikChem 8500, Lachat, CO). Solution pH and electrical conductivity were monitored by an 166 

Orion 4-Star Plus pH/conductivity meter (Thermo Scientific, Waltham, MA). 167 

Microbial Community Analysis. Mixed liquor samples were collected every ten days for 168 

microbial analysis based on a method reported by Luo et al.
13

 Briefly, this method included DNA 169 

extraction using the FastDNA
®
 SPIN Kit for soil (MP Biomedicals, Santa Ana, CA), PCR 170 

amplification of V3 – V4 16S rRNA gene using primer pairs of 341F 5’-171 

CCTAYGGGRBGCASCAG-3’ and 806R 5’-GGACTACNNGGGTATCTAAT-3’, and amplicon 172 

sequencing on the Illumina MiSeq platform (Australian Genome Research Facility, Queensland, 173 

Australia).  174 

Paired-end reads were assembled using PEAR (version 0.9.8)
29

 and then processed with 175 

Quantitative Insights into Microbial Ecology (QIIME 1.9.1)
30

, USEARCH (version 8.0.1623)
31

, 176 

and UPARSE pipeline. Taxonomy was assigned by the Ribosomal Database Project (RDP) 177 

classifer with the Microbial Database for Activated Sludge (MiDAS) (version 2.1.3)
32

 as the 178 

reference. Both α-diversity (diversity within communities) and β-diversity (partitioning of 179 

diversity among communities) were determined at the Operational Taxonomic Unit (OTU) level 180 

(> 97% sequence similarity) to examine impacts of salinity build-up on the bacterial community 181 

structure and dynamics. Specifically, the α-diveristy was indicated by the Chao 1 index, 182 

observed OTUs, Shannon index, and phylogenetic diversity. The Chao 1 index is an estimate of 183 

the total OTU richness in a community when a saturated number of sequences are collected.
33

 184 

The observed OTUs are the number of unique OTUs that are observed in a given sample, which 185 
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is commonly lower than the Chao 1 index. The Shannon index determines the abundance and 186 

evenness of bacterial species in a community.
34

 A higher Shannon index indicates greater 187 

bacterial diversity and a more uniform distribution. Phylogenetic diversity represents the 188 

phylogenetic relationship based on the sum of the total branch length in a phylogenetic tree that 189 

leads to each member of a community.
35

 A higher phylogenetic diversity indicates a more widely 190 

distributed bacterial community. The β-diversity was determined by unweighted UniFrac 191 

distance metrics that was interpreted via the principal coordinate analysis (PCoA) and 192 

unweighted pair group method with arithmetic mean.
13

 All sequencing data in this study are 193 

available at the Sequence Read Archive (Accession Number: SRP096094) in the National Center 194 

for Biotechnology Information (Bethesda, MD). 195 

Membrane Hydrophobicity. At the conclusion of OMBR–MD operation, the 196 

hydrophobicity of the MD membrane was evaluated by contact angle measurements using a 197 

Rame-Hart Goniometer (Model 250, Rame-Hart, Netcong, NJ) based on the standard sessile 198 

drop method. Ten water droplets were applied to the membrane sample and contact angles on 199 

both sides of the droplet were analyzed.                                                                                                     200 

RESULTS AND DISCUSSION 201 

Water Flux of OMBR and MD. A stable water flux (approximately 6 L m
-2 

h
-1

) was 202 

achieved during OMBR operation (Figure 2A), despite a notable salinity build-up in the 203 

bioreactor (Figure 2B). The observed salinity increase in the bioreactor is mainly attributed to the 204 

high salt rejection by the FO membrane. The reverse salt flux from the draw solution is likely to 205 

be less significant because of the high selectivity of the TFC FO membrane.
36, 37

 During OMBR–206 

MD operation, the rate of water extraction from the seawater draw solution by MD was higher 207 

than that through the FO process, particularly within the first 20 days (Figure S2, SI). In other 208 

words, the draw solution was continuously replenished with additional seawater to compensate 209 

draw solute loss due to the reverse salt flux. As a result, the continuous seawater addition caused 210 

a proportional increase in the draw solution salinity (Figure 2B), which offsets the build-up of 211 

salinity in the bioreactor. This results in a relatively constant osmotic driving force (i.e., 212 

transmembrane osmotic pressure) for water diffusion. 213 

[Figure 2] 214 



9 

FO membrane fouling was negligible during OMBR–MD operation. No evidence of cake 215 

formation was observed on the membrane active layer at the end of the experiment. The SEM-216 

EDS analysis showed that only a few particles, consisting of carbon, oxygen, sodium, 217 

magnesium, phosphorus, and chloride, scattered on the membrane surface (Figure S3A, SI). It is 218 

noteworthy that continuous aeration to activated sludge for microbial growth could mitigate FO 219 

membrane fouling by generating hydrodynamic turbulence adjacent to the membrane surface.
38, 

220 

39
 A similar fouling pattern was also observed on the membrane supporting layer. Since seawater 221 

was pretreated with 0.45 µm filter papers before using as the draw solution and the direction of 222 

the water flux was outward of the membrane supporting layer, fouling on the FO membrane 223 

supporting side was not expected. Only a few solid particles, whose elementary composition 224 

matched key elements of seawater, were distributed sparingly on the membrane supporting layer 225 

(Figure S3B, SI).  226 

Water flux of the MD process decreased continuously (Figure 2A). The observed flux decline 227 

is attributed to membrane fouling due to the deposition of organic matter on the membrane 228 

surface (Figure S3C, SI). During OMBR–MD operation, a small but nevertheless discernible 229 

accumulation of protein- and humic-like substances in the draw solution was observed (Figure 230 

S4, SI). These organic substances induced severe organic fouling of the MD membrane, 231 

particularly in the presence of divalent cations (e.g., Ca
2+

 and Mg
2+

) in seawater serving as 232 

foulant bridges.
40

 Fouling of the MD membrane was also indicated by a significant reduction in 233 

membrane hydrophobicity. Over the entire OMBR–MD operation, the contact angle of the MD 234 

membrane decreased from 135 ± 10° (pristine membrane) to 67 ± 5°. Thus, further research to 235 

address the accumulation of organic matter in the draw solution and to control MD membrane 236 

fouling is necessary for the sustainable operation of the OMBR–MD hybrid system. 237 

Bacterial Community Diversity and Structure. Amplicon sequencing on the Miseq 238 

Illumina platform was performed to provide a high coverage of the bacterial community to 239 

quantitatively evaluate microbial responses to salinity build-up in the bioreactor during OMBR–240 

MD operation using seawater as the draw solution. Results in Figure 3 show that initial salinity 241 

build-up in the bioreactor reduced the bacterial community diversity. Within the first 20 days, α-242 

diversity indices (i.e., Chao 1 value, observed OTUs, Shannon index, and phylogenetic diversity) 243 

decreased significantly (Figure 3), possibly due to the inhibitory effect of salinity increase on the 244 

growth and metabolism of halophobic bacteria in the bioreactor (Figure 4). Nevertheless, results 245 
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in Figure 3 also show stable α-diversity indices from day 20 onward, which can be seen as an 246 

evidence of bacterial acclimatization to the saline environment in the bioreactor. Such variation 247 

in α-diversity was corroborated by PCoA and hierarchical clustering of the unweighted UniFrac 248 

distance. Both PCoA and hierarchical clustering show that the bacterial community structure 249 

varied mostly within the first 20 days of operation, thereafter, changes in the bacterial 250 

community were insignificant (Figure S5, SI). Similar bacterial adaptation to the elevated 251 

salinity has been observed, for example, in conventional MBR with continuous increase in feed 252 

salinity
13

 and a natural estuary with salinity gradient
41

. 253 

[Figure 3] 254 

Impacts of salinity build-up in the bioreactor on the bacterial community diversity and 255 

structure were further examined by the taxonomic analysis at the genus level (Figures 4 and 5). 256 

Based on the MiDAS database,
32

 75 – 90% of the obtained sequences could be classified at the 257 

genus level, mostly belonging to 12 abundant bacterial phyla (Fig. S6, SI). Results from the 258 

taxonomic analysis show that the bacterial consortium can be divided into three groups with 259 

different responses to salinity build-up in the bioreactor. 260 

In the first group, the growth of microbes was inhibited by salinity build-up in the bioreactor. 261 

Given their susceptibility to the saline condition, these bacteria could be considered as 262 

halophobic.
12

 Microbial analysis at the genus level show that 18 halophobic bacteria were 263 

initially abundant in the bioreactor; however, their abundance decreased significantly with 264 

salinity build-up (Figure 4), possibly due to cell plasmolysis under the elevated saline 265 

condition.
13

 266 

[Figure 4] 267 

In the second group, in contrast to the first group, some bacteria proliferated and became more 268 

abundant with salinity build-up in the bioreactor. Based on their responses to the elevated 269 

salinity, these bacteria could be classified as halophilic. In total, nine halotolerant or halophilic 270 

genera with relative abundance above 0.6% were identified in this study (Figure 5A). As a 271 

notable example, the relative abundance of the genus Methylibium, belonging to the family 272 

Comamonadaceae, increased from approximately 3.7 to 14.9% as the mixed liquor conductivity 273 

increased from nearly 0.4 to 13.3 mS/cm during OMBR operation. 274 

[Figure 5] 275 
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In the third group, an initial increase and then a gradual decrease in the relative abundance of 276 

some halotolerant bacteria was observed (Figure 5B). As a notable example, the relative 277 

abundance of an uncultured genus affiliated with the family Cytophagaceae increased from 278 

nearly 13.1 to 45.5% when the mixed liquor conductivity increased up to approximately 11 279 

mS/cm, but then decreased to 32.6% as the mixed liquor conductivity further increased. This 280 

result suggests that a salinity threshold exists for these genera, below which the saline condition 281 

favored their growth and metabolism in the bioreactor. 282 

Results in Figures 4 and 5 illustrate how the bacterial population responded to salinity build-up 283 

in the bioreactor during OMBR operation. Salinity increase in the bioreactor favored the 284 

proliferation of halotolerant and halophilic microbes to compensate the inhibitory effect on the 285 

growth of halophobic bacteria. A typical example is nitrifying bacteria. Salinity build-up in 286 

bioreactor significantly reduced the relative abundance of the genus Nitrospira belonged to the 287 

family Nitrospiraceae and the genus A0837 affiliated to the family Nitrosomonadaceae (Figure 288 

4), but increased the relative abundance of an uncultured member of Nitrosomonadaceae (Figure 289 

5). As a result, despite the sensitivity of nitrifying bacteria to the saline condition,
11

 NH4
+
 could 290 

be effectively removed in the bioreactor during OMBR–MD operation as discussed in the 291 

following section. Thus, this is the first set of results to demonstrate the potential of an 292 

indigenous bacterial community to acclimatize to salinity build-up to maintain a stable biological 293 

treatment in OMBR–MD operation. 294 

Contaminant Removal by OMBR–MD. Both organic matter and nutrients were 295 

effectively removed by the OMBR–MD hybrid system (Figures 6 and 7), due to the 296 

complementarity of biological treatment and two high rejection membrane processes. Effective 297 

biological treatment resulted in negligible TOC and NH4
+ 

in the bioreactor (Figure 6A&B). 298 

However, TN accumulated considerably in the bioreactor (Figure 6C), because there was no 299 

denitrification under aerobic conditions. Some nitrogen species also accumulated in the draw 300 

solution since they could pass through the FO but not the MD membrane. PO4
3-

 was highly 301 

rejected by the FO membrane due to its relatively large hydrated radius and negative charge. As 302 

a result, there is a notable accumulation of PO4
3-

 in the bioreactor (Figure 6D). The observed 303 

accumulation of PO4
3-

 presents a good opportunity for phosphorus recovery, for example, by 304 

intermittent microfiltration extraction and subsequent chemical precipitation.
16

 305 

[Figure 6] 306 
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The OMBR–MD hybrid system achieved more than 90% removal of all 30 TrOCs 307 

investigated in this study (Figure 7). Results in Figure 7 also demonstrate that biodegradation 308 

was the dominating removal mechanism for these TrOCs. Of the 30 TrOCs, all hydrophobic 309 

compounds with Log D > 3.2 could be effectively removed in the bioreactor (Figure 7). It has 310 

been well established that hydrophobic TrOCs could be readily removed by activated sludge 311 

because of their adsorption onto biomass for subsequent biodegradation.
42

 As a result, the 312 

contribution of the FO rejection to the overall removal efficiency of these hydrophobic 313 

compounds in the OMBR–MD hybrid system was insignificant (less than 5%). 314 

 [Figure 7] 315 

Despite their varying removal in the bioreactor, biodegradation was also the most prevalent 316 

removal mechanism of all hydrophilic TrOCs (Log D < 3.2) (Figure 7). Such a variation in 317 

biological removal could be attributed to the intrinsic biodegradability of these hydrophilic 318 

compounds. TrOCs possessing strong electron donating functional groups (e.g., amine and 319 

hydroxyl) in the molecular structure are more amendable to electrophilic attack by oxygenase 320 

secreted from aerobic bacteria; thus, they are readily biodegradable.
42, 43

 In this study, these 321 

TrOCs include salicylic acid, ketoprofen, naproxen, metronidazole, ibuprofen, gemfibrozil, 322 

propoxur, pentachlorophenol, DEET, and estriol, which achieved removal exceeding 90% in the 323 

bioreactor (Figure 7). 324 

By contrast, TrOCs possessing electron-withdrawing functional groups (e.g., chloro, amide, 325 

and nitro) in the molecular structure are persistent to biodegradation, since these functional 326 

groups can reduce electrons required for their oxidative catabolism.
42

 In this study, these TrOCs 327 

include clofibric acid, fenoprop, primidone, diclofenac, carbamazepine, and atrazine (Figure 7). 328 

In fact, the removal of these persistent TrOCs by conventional MBR has been reported to be 329 

negligible.
42, 44-46

 For example, the removal of carbamazepine in the bioreactor was more than 48% 330 

in this study, while that in conventional MBR was only in the range of 0 – 14%.
42, 45, 46

 Such 331 

notable removal deviation was also observed for atrazine, diclofenac, and primidone, with 332 

removal efficiency less than 40% in conventional MBR,
42, 45, 46

 compared to more than 60% in 333 

the bioreactor in this study. Despite their persistency, due to their extended retention in the 334 

bioreactor, biodegradation was still the most prevalent removal mechanism of these hydrophilic 335 

TrOCs in OMBR–MD (Figure 7).  336 
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The complementarity between the FO process and biodegradation in OMBR for effective 337 

TrOC removal is clearly evidenced in Figure 7. As discussed above, all hydrophobic TrOCs 338 

could be biologically removed by more than 90%. Although some hydrophilic TrOCs, such as 339 

carbamazepine and atrazine, were recalcitrant to biodegradation, they were well rejected by the 340 

FO membrane (Figure S7, SI). As a result, all 30 TrOCs investigated in this study were removed 341 

by more than 90% in OMBR. Thus, the role of MD was restricted mostly to draw solution 342 

recovery in the OMBR–MD hybrid system. The contribution of MD toward the overall removal 343 

efficiency of TrOCs in the hybrid system was less than 10% in all cases (Figure 7).  344 

Implications. In this study, continuous operation of an OMBR–MD hybrid system using 345 

inexpensive and readily available seawater as the draw solution was demonstrated. The proposed 346 

OMBR–MD hybrid system shows excellent contaminant removal, including a range of TrOCs of 347 

significant concern to water reuse. Results show, for the first time, evidence of bacterial 348 

acclimatization to salinity build-up within the bioreactor during continuous OMBR operation. In 349 

particular, through 16S rRNA gene sequencing, we identified 18 halophilic and halotolerant 350 

bacterial genera with notable abundance. The identification of these bacterial genera is an 351 

important first step to potentially develop techniques to fortify OMBR with halophilic or 352 

halotolerant microbes. The OMBR–MD hybrid system can potentially be deployed, for example, 353 

on cruise ships and in coastal regions, where the need for wastewater reuse and seawater 354 

desalination co-exists. Further studies are necessary to evaluate the economic feasibility of 355 

OMBR–MD at a pilot-scale level.  356 
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 521 

Figure 2: (A) Water flux of OMBR and MD. (B) Electrical conductivity of the mixed liquor 522 

and seawater draw solution during OMBR–MD operation. Experimental conditions: DO = 5 523 

mg/L, initial MLSS = 6 g/L, SRT = 20 d, bioreactor temperature = 25 ± 1 ºC, draw solution 524 

cross-flow velocity = 2.8 cm/s, draw solution temperature = 35 ± 1 ºC, MD feed and distillate 525 

cross-flow velocity = 8.8 cm/s, MD feed solution temperature = 40 ± 1 ºC, and MD distillate 526 

temperature = 20 ± 1 ºC. Seawater after microfiltration pretreatment was used as the draw 527 

solution. Draw solution was replenished continuously to maintain a working volume at 10 L. 528 

 529 
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 530 

Figure 3: The α-diversity indices (i.e., Chao 1 value, Observed OTUs, Shannon index, and 531 

phylogenetic diversity) of mixed liquor samples collected during OMBR–MD operation. 532 

Diversity indices were estimated at the minimum sequencing depth of all samples (i.e., 533 

43,000 sequences per sample). Error bars represent the standard deviation from 10 repetitions 534 

of each sample. Coverage of all samples was more than 99.5%. Experimental conditions are 535 

as described in Figure 2. 536 
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 537 

Figure 4: Relative abundance of 18 major bacterial genera (with relative abundance > 0.6%) 538 

whose growth was inhibited with salinity build-up in the bioreactor (indicated by the mixed 539 

liquor conductivity) during OMBR–MD operation. Experimental conditions are as described 540 

in Figure 2. 541 
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 542 

Figure 5: Relative abundance of major bacterial genera (with relative abundance > 0.6%) 543 

that proliferated (A) continuously and (B) only to some extent with salinity build-up in the 544 

bioreactor (indicated by the mixed liquor conductivity) during OMBR–MD operation. 545 

Experimental conditions are as described in Figure 2. 546 

 547 
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 548 

Figure 6: Distribution of (A) TOC, (B) NH4
+
, (C) TN, and (D) PO4

3-
 as well as their overall 549 

removal in the OMBR–MD hybrid system. Experimental conditions are as summarized in 550 

Figure 2. 551 

 552 
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 553 

Figure 7: Removal of TrOCs by different units (i.e., bioreactor, FO membrane, and MD 554 

membrane) of the OMBR–MD hybrid system. Average removal data obtained from five 555 

measurements are shown, with standard deviation in the range of 0.1 to 30%. TrOCs are 556 

ordered according to their effective octanol–water partition coefficient (i.e., Log D) at 557 

solution pH 8. Observed FO rejection shows the removal difference between bioreactor and 558 

OMBR, while observed MD rejection is the removal difference between OMBR and OMBR–559 

MD. Experimental conditions are as described in Figure 2. 560 
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