57 research outputs found

    RNAi-based Gene Therapy for Blood Genetic Diseases

    Get PDF
    Therapies for blood genetic diseases can be divided into different categories, including chemotherapy, radiotherapy, gene therapy, and hematopoietic stem cell transplantation. Among these treatments, gene targeting is progressively becoming a therapeutic alternative that offers the possibility of a permanent cure for certain blood genetic diseases. In recent years, gene therapy has played a more important role in curing genetic blood disorders. RNA interference (RNAi) is one of the directions for gene therapy, which was intensively studied in the past decades for its potentials in the treatment of diseases. In order to provide useful references and prospective directions for further studies concerning RNAi-based gene therapy for blood genetic diseases, current RNAi-based gene therapies for several typical blood genetic diseases have been summarized and discussed in this chapter

    A Study on the Construction of Cross-Regional Emergency Management System From a Globalization Perspective

    Get PDF
    From a perspective of globalization, the dynamic network which is able to transfer the information of natural disasters and emergencies, command and deploy personnel and relief materials is a cross-regional system of systems. Since there are many systems in this field, it is necessary to build an emergency management system by reusing and integrating the existing systems. Firstly, we introduce the concept and features of system of systems; secondly, we elaborate that emergency management system can be regarded as a system of systems. Then, we put forward the concept of meta-structure for system-based communication, making the structure and functions of system of systems more understandable. Finally, based on the national information infrastructure platform, we build the logic model of China emergency management system of systems from a globalization perspective

    Acetylation of WRN Protein Regulates Its Stability by Inhibiting Ubiquitination

    Get PDF
    Background: WRN is a multi-functional protein involving DNA replication, recombination and repair. WRN acetylation has been demonstrated playing an important role in response to DNA damage. We previously found that WRN acetylation can regulate its enzymatic activities and nuclear distribution. Methodology/Principal Finding: Here, we investigated the factors involved in WRN acetylation and found that CBP and p300 are the only major acetyltransferases for WRN acetylation. We further identified 6 lysine residues in WRN that are subject to acetylation. Interestingly, WRN acetylation can increase its protein stability. SIRT1-mediated deacetylation of WRN reverses this effect. CBP dramatically increases the half-life of wild type WRN, while mutation of these 6 lysine residues (WRN-6KR) abrogates this increase. We further found that WRN stability is regulated by the ubiquitination pathway and WRN acetylation by CBP significantly reduces its ubiquitination. Importantly, we found that WRN is strongly acetylated and stabilized in response to mitomycin C (MMC) treatment. H1299 cells stably expressing WRN-6KR, which mimics unacetylated WRN, display significantly higher MMC sensitivity compared with the cells expressing wild-type WRN. Conclusion/Significance: Taken together, these data demonstrate that WRN acetylation regulates its stability and has significant implications regarding the role of acetylation on WRN function in response to DNA damage

    Deacetylation of HSD17B10 by SIRT3 regulates cell growth and cell resistance under oxidative and starvation stresses.

    Get PDF
    17-beta-hydroxysteroid dehydrogenase 10 (HSD17B10) plays an important role in mitochondrial fatty acid metabolism and is also involved in mitochondrial tRNA maturation. HSD17B10 missense mutations cause HSD10 mitochondrial disease (HSD10MD). HSD17B10 with mutations identified from cases of HSD10MD show loss of function in dehydrogenase activity and mitochondrial tRNA maturation, resulting in mitochondrial dysfunction. It has also been implicated to play roles in the development of Alzheimer disease (AD) and tumorigenesis. Here, we found that HSD17B10 is a new substrate of NAD-dependent deacetylase Sirtuin 3 (SIRT3). HSD17B10 is acetylated at lysine residues K79, K99 and K105 by the acetyltransferase CBP, and the acetylation is reversed by SIRT3. HSD17B10 acetylation regulates its enzymatic activity and the formation of mitochondrial RNase P. Furthermore, HSD17B10 acetylation regulates the intracellular functions, affecting cell growth and cell resistance in response to stresses. Our results demonstrated that acetylation is an important regulation mechanism for HSD17B10 and may provide insight into interrupting the development of AD

    Activation of Stat3 sequence-specific DNA binding and transcription by p300/CREB-binding protein-mediated acetylation

    No full text
    Signal transducers and activators of transcription (Stat) belong to a family of latent cytoplasmic factors that can be activated by tyrosine phosphorylation by members of the Jak tyrosine kinase family in response to a variety of cytokines and growth factors. Activated Stats form dimers and translocate into nucleus to induce expression of critical genes essential for normal cellular events. Here we report for the first time that Stat3 can be modified by acetylation both in vivo and in vitro. A major site of Stat3 that is acetylated by its coactivator, p300/CREB-binding protein (CBP), resides in the C-terminal transcriptional activation domain at lysine 685. Furthermore, the acetylation of Stat3 can stimulate its sequence-specific DNA binding ability and transactivation activity. Inhibition of histone deacetylase activity in cells results in increased Stat3 nuclear localization. These observations clearly indicate a novel mechanism for Stat3 activation in mammalian cells

    SIRT1 and p53, effect on cancer, senescence and beyond

    No full text
    China Scholarship Council; NIH/NIANAD(+)-dependent Class III histone deacetylase SIRT1 is a multiple function protein critically involved in stress responses, cellular metabolism and aging through deacetylating a variety of substrates including p53, forkhead-box transcription factors, PGC-1 alpha, NF-kappa B, Ku70 and histones. The first discovered non-histone target of SIRT1, p53, is suggested to play a central role in SIRT1-mediated functions in tumorigenesis and senescence. SIRT1 was originally considered to be a potential tumor promoter since it negatively regulates the tumor suppressor p53 and other tumor suppressors. There is new evidence that SIRT1 acts as a tumor suppressor based on its role in negatively regulating beta-catenin and survivin. This review provides an overview of current knowledge of SIRT1-p53 signaling and controversies regarding the functions of SIRT1 in tumorigenesis. (C) 2010 Elsevier B.V. All rights reserved

    Global-scale profiling of differential expressed lysine acetylated proteins in colorectal cancer tumors and paired liver metastases

    Get PDF
    Lysine acetylated modification was indicated to impact colorectal cancer (CRC)'s distant metastasis. However, the global acetylated proteins in CRC and the differential expressed acetylated proteins and acetylated sites between CRC primary and distant metastatic tumor remains unclear. Our aim was to construct a complete atlas of acetylome in CRC and paired liver metastases. Combining high affinity enrichment of acetylated peptides with high sensitive mass spectrometry, we identified 603 acetylation sites from 316 proteins, among which 462 acetylation sites corresponding to 243 proteins were quantified. We further classified them into groups according to cell component, molecular function and biological process and analyzed the metabolic pathways, domain structures and protein interaction networks. Finally, we evaluated the differentially expressed lysine acetylation sites and revealed that 31 acetylated sites of 22 proteins were downregulated in CRC liver metastases compared to that in primary CRC while 40 acetylated sites of 32 proteins were upregulated, of which HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. These results provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. Biological significance: This study described provides, for the first time, that full-scale profiling of lysine acetylated proteins were identified and quantified in colorectal cancer (CRC) and paired liver metastases. The novelty of the study is that we constructed a complete atlas of acetylome in CRC and paired liver metastases. Moreover, we analyzed these differentially expressed acetylated proteins in cell component, molecular function and biological process. In addition, metabolic pathways, domain structures and protein interaction networks of acetylated proteins were also investigated. Our approaches shows that of the differentially expressed proteins, HIST2H3AK19Ac and H2BLK121Ac were the acetylated histones most changed, while TPM2 K152Ac and ADH1B K331Ac were the acetylated non-histones most altered. Our findings provide an expanded understanding of acetylome in CRC and its distant metastasis, and might prove applicable in the molecular targeted therapy of metastatic CRC. (C) 2016 Elsevier B.V. All rights reserved.Peer reviewe

    C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO

    No full text
    14-3-3 proteins are evolutionarily conserved and ubiquitous proteins that function in a wide variety of biological processes. Here we define a new role for C. elegans 14-3-3 proteins in life span regulation. We identify two C. elegans 14-3-3 proteins as interacting proteins of a major life span regulator, the C. elegans SIR2 ortholog, SIR-2.1. Similar to sir-2.1, we find that overexpression of either 14-3-3 protein (PAR-5 or FTT-2) extends life span and that this is dependent on DAF-16, a forkhead transcription factor (FOXO), another important life span regulator in the insulin/IGF-1 signaling pathway. Furthermore, we show that both 14-3-3 proteins are co-expressed with DAF-16 and SIR-2.1 in the tissues critical for life span regulation. Finally, we show that DAF-16/FOXO also physically interacts with the 14-3-3 proteins. These results suggest that C. elegans 14-3-3 proteins can regulate longevity by cooperating with both SIR-2.1 and DAF-16/FOXO
    • 

    corecore