1,063 research outputs found
Improved Lattice Gauge Field Hamiltonian
Lepage's improvement scheme is a recent major progress in lattice ,
allowing to obtain continuum physics on very coarse lattices. Here we discuss
improvement in the Hamiltonian formulation, and we derive an improved
Hamiltonian from a lattice Lagrangian free of errors. We do this by
the transfer matrix method, but we also show that the alternative via Legendre
transformation gives identical results. We consider classical improvement,
tadpole improvement and also the structure of L{\"u}scher-Weisz improvement.
The resulting color-electric energy is an infinite series, which is expected to
be rapidly convergent. For the purpose of practical calculations, we construct
a simpler improved Hamiltonian, which includes only nearest-neighbor
interactions.Comment: 30 pages, LaTe
Nonlinear Dynamical Stability of Newtonian Rotating White Dwarfs and Supermassive Stars
We prove general nonlinear stability and existence theorems for rotating star
solutions which are axi-symmetric steady-state solutions of the compressible
isentropic Euler-Poisson equations in 3 spatial dimensions. We apply our
results to rotating and non-rotating white dwarf, and rotating high density
supermassive (extreme relativistic) stars, stars which are in convective
equilibrium and have uniform chemical composition. This paper is a continuation
of our earlier work ([28])
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
The molecular systems composed of the charmed mesons in the doublet
We study the possible heavy molecular states composed of a pair of charm
mesons in the H and S doublets. Since the P-wave charm-strange mesons
and are extremely narrow, the future experimental
observation of the possible heavy molecular states composed of
and may be feasible if they really exist.
Especially the possible states may be searched for via the
initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and
Corrected typos
Density functional study of Au (n=2-20) clusters: lowest-energy structures and electronic properties
We have investigated the lowest-energy structures and electronic properties
of the Au(n=2-20) clusters based on density functional theory (DFT) with
local density approximation. The small Au clusters adopt planar structures
up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a
structural transition from tabular cage-like structure to compact
near-spherical structure is found around n=15. The most stable configurations
obtained for Au and Au clusters are amorphous instead of
icosahedral or fcc-like, while the electronic density of states sensitively
depend on the cluster geometry. Dramatic odd-even alternative behaviors are
obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of
gold clusters. The size evolution of electronic properties is discussed and the
theoretical ionization potentials of Au clusters compare well with
experiments.Comment: 6 pages, 7 figure
Intersubband spin-density excitations in quantum wells with Rashba spin splitting
In inversion-asymmetric semiconductors, spin-orbit coupling induces a
k-dependent spin splitting of valence and conduction bands, which is a
well-known cause for spin decoherence in bulk and heterostructures.
Manipulating nonequilibrium spin coherence in device applications thus requires
understanding how valence and conduction band spin splitting affects carrier
spin dynamics. This paper studies the relevance of this decoherence mechanism
for collective intersubband spin-density excitations (SDEs) in quantum wells. A
density-functional formalism for the linear spin-density matrix response is
presented that describes SDEs in the conduction band of quantum wells with
subbands that may be non-parabolic and spin-split due to bulk or structural
inversion asymmetry (Rashba effect). As an example, we consider a 40 nm
GaAs/AlGaAs quantum well, including Rashba spin splitting of the conduction
subbands. We find a coupling and wavevector-dependent splitting of the
longitudinal and transverse SDEs. However, decoherence of the SDEs is not
determined by subband spin splitting, due to collective effects arising from
dynamical exchange and correlation.Comment: 10 pages, 4 figure
A NuSTAR Survey of Nearby Ultraluminous Infrared Galaxies
We present a Nuclear Spectroscopic Telescope Array (NuSTAR), Chandra, and XMM-Newton survey of nine of the nearest ultraluminous infrared galaxies (ULIRGs). The unprecedented sensitivity of NuSTAR at energies above 10 keV enables spectral modeling with far better precision than was previously possible. Six of the nine sources observed were detected sufficiently well by NuSTAR to model in detail their broadband X-ray spectra, and recover the levels of obscuration and intrinsic X-ray luminosities. Only one source (IRAS 13120â5453) has a spectrum consistent with a Compton-thick active galactic nucleus (AGN), but we cannot rule out that a second source (Arp 220) harbors an extremely highly obscured AGN as well. Variability in column density (reduction by a factor of a few compared to older observations) is seen in IRAS 05189â2524 and Mrk 273, altering the classification of these borderline sources from Compton-thick to Compton-thin. The ULIRGs in our sample have surprisingly low observed fluxes in high-energy (>10 keV) X-rays, especially compared to their bolometric luminosities. They have lower ratios of unabsorbed 2â10 keV to bolometric luminosity, and unabsorbed 2â10 keV to mid-IR [O iv] line luminosity than do Seyfert 1 galaxies. We identify IRAS 08572+3915 as another candidate intrinsically X-ray weak source, similar to Mrk 231. We speculate that the X-ray weakness of IRAS 08572+3915 is related to its powerful outflow observed at other wavelengths
Tracking echovirus eleven outbreaks in Guangdong, China
In April 2019, a suspect cluster of enterovirus cases was reported in a neonatology department in Guangdong, China, resulting in five deaths. We aimed to investigate the pathogen profiles in fatal cases, the circulation and transmission pattern of
the viruses by combining metatranscriptomic, phylogenetic, and epidemiological analyses. Metatranscriptomic sequencing
was used to characterize the enteroviruses. Clinical and environmental surveillance in the local population was performed
to understand the prevalence and genetic diversity of the viruses in the local population. The possible source(s), evolution,
transmission, and recombination of the viruses were investigated by incorporating genomes from the current outbreak,
from local retrospective surveillance, and from public databases. Metatranscriptomic analysis identified Echovirus 11 (E11)
in three fatal cases. Seroprevalence of neutralization antibody to E11 was 35 to 44 per cent in 3â15 age groups of general population, and the viruses were associated with various clinical symptoms. From the viral phylogeny, nosocomial transmissions were identified and all E11 2019 outbreak strains were closely related with E11 strains circulating in local population 2017â19. Frequent recombination occurred among the 2019 Guangdong E11 outbreak strains and various genotypes in enterovirus B species. This study provides an example of combining advanced genetic technology and epidemiological surveillance in pathogen diagnosis, source(s), and transmission tracing during an infectious disease outbreak. The result highlights the hidden E11 circulation and the risk of viral transmission and infection in the young age population in China.
Frequent recombination between Guangdong-like strains and other enterovirus genotypes also implies the prevalence of
these emerging E11 strains
NuSTAR unveils a Compton-thick type 2 quasar in MrK 34
We present Nuclear Spectroscopic Telescope Array (NuSTAR) 3-40 keV observations of the optically selected Type 2 quasar (QSO2) SDSS J1034+6001 or Mrk 34. The high-quality hard X-ray spectrum and archival XMM-Newton data can be fitted self-consistently with a reflection-dominated continuum and a strong Fe K? fluorescence line with equivalent width >1 keV. Prior X-ray spectral fitting below 10 keV showed the source to be consistent with being obscured by Compton-thin column densities of gas along the line of sight, despite evidence for much higher columns from multiwavelength data. NuSTAR now enables a direct measurement of this column and shows that N H lies in the Compton-thick (CT) regime. The new data also show a high intrinsic 2-10 keV luminosity of L 2-10 ~ 1044 erg sâ1, in contrast to previous low-energy X-ray measurements where L 2-10 lesssim 1043 erg sâ1 (i.e., X-ray selection below 10 keV does not pick up this source as an intrinsically luminous obscured quasar). Both the obscuring column and the intrinsic power are about an order of magnitude (or more) larger than inferred from pre-NuSTAR X-ray spectral fitting. Mrk 34 is thus a "gold standard" CT QSO2 and is the nearest non-merging system in this class, in contrast to the other local CT quasar NGC 6240, which is currently undergoing a major merger coupled with strong star formation. For typical X-ray bolometric correction factors, the accretion luminosity of Mrk 34 is high enough to potentially power the total infrared luminosity. X-ray spectral fitting also shows that thermal emission related to star formation is unlikely to drive the observed bright soft component below ~3 keV, favoring photoionization instead
Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV
By analyzing the data sets of 17.3 pb taken at GeV
and 6.5 pb taken at GeV with the BESII detector at the
BEPC collider, we have measured the observed cross sections for 12 exclusive
light hadron final states produced in annihilation at the two energy
points. We have also set the upper limits on the observed cross sections and
the branching fractions for decay to these final states at 90%
C.L.Comment: 8 pages, 5 figur
- âŠ