8 research outputs found

    Experimental Study on Mechanical Behavior of Skirt–Pile Foundations in Saturated Clay under Horizontal Load

    No full text
    Skirt–pile foundations have gained widespread attention in the field of offshore engineering due to their ease of installation and high bearing capacity. In this study, the ultimate bearing capacity, pile bending moment distribution and development, cumulative deformation characteristics, and cyclic stiffness development of skirt–pile foundations were investigated using physical model tests. The experimental results indicate that the ultimate bearing capacity and deformation resistance of the foundation can effectively be improved by increasing the skirt diameter. The cumulative deformation of the skirt–piles exhibited rapid development during the initial stages of cyclic loading, eventually stabilizing. Under long-term cyclic loading, the existence of the skirt can share the bending moment, which then affects the internal force distribution of the pile foundation along the axis. The pile foundation’s cyclic stiffness reduces as the loading cycles increase and increases as the skirt diameter and length grow. Meanwhile, the horizontal cyclic stiffness decreases as the number of cycles increases, stabilizing after 3000 cycles. This study can not only deepen the understanding of the deformation laws of skirt–pile foundations in clay soil but also offers some references for the design of offshore pile foundations

    Experimental Study on Pile-Soil Interaction Response in Saturated Sand under Long-Term Horizontal Cyclic Loading

    No full text
    To explore the pile-soil interaction response in saturated sand under long-term horizontal cyclic loading, a series of indoor 1 g model tests were carried out with self-made loading equipment. In this paper, the self-made loading system and test program are introduced firstly. Then, the long-term horizontal cyclic loading-induced pile top cumulative displacement, the rotation angle, the mono-pile horizontal cyclic stiffness, the cyclic p-y curve, the pore water pressure, the soil settlement, and cracks around mono-pile are fully studied. Based on the experimental results, the pile-soil interaction response shows a two-stage characteristic with the change in cycle (N), and the short-term effects of horizontal cyclic loading are greater than the long-term effects. In the first 1000 cycles, the cumulative displacement of pile top, the rotation angle of mono-pile, and the pore water pressure could reach more than 90% of the final value. In addition, the cyclic p-y curve obtained by the test is generally smaller than the p-y curve calculated from the API specification, and the soil near the mono-pile will settle with annular cracks under the cyclic loading

    Experimental Study on Cumulative Deformation of Pile Group in Saturated Clay under Horizontal Cyclic Loading

    No full text
    In order to investigate the cumulative deformation of the pile group in saturated clay under horizontal cyclic loading, a series of 1g model tests were conducted using the self-made loading equipment in this paper. Firstly, the loading equipment and testing procedure are introduced. Then, the cumulative deformation of the pile group, the dynamic response of the soil, and the bending moment of the pile shaft under horizontal cyclic loading are studied. Finally, the horizontal cyclic stiffness of the pile group is analyzed based on the experimental results. It can be found that the cumulative displacement, the rotation angle of the bearing platform, the pile shaft bending moment, and the pore water pressure can attain 90% of the peak values within the first 1000 cycles, and the growth rate slows down in subsequent loading cycles. Moreover, the bending moment of each pile increases with the burial depth and gradually decreases after the peak values. Notably, the horizontal cyclic stiffness of the pile group grows with the cycle loading times and decreases with the loading amplitude

    Experimental Study for Wave-Induced Pore-Water Pressures in a Porous Seabed around a Mono-Pile

    No full text
    In this paper, the results of a series of experiments on wave-induced pore-water pressures around a mono-pile are presented. Unlike the previous study, in which the mono-pile was fully buried, the mono-pile in this study was installed at 0.6 m below the seabed surface. In this study, we focus on the pore-water pressures around the mono-pile and beneath the pile. The experimental results lead to the following conclusions: (1) the seabed response is more pronounced near the surface (in the region above 30 cm deep), and the rate of pore pressure attenuation gradually slows down. For the region below 0.3 m, the response is much smaller; (2) in general, along the surface of the pile, pore pressures increase as the wave height and wave period increase; (3) the spatial distribution of pore pressure near the pile will vary with different wave periods, while the wave height only has a significant effect on the amplitude; and (4) At z = −0.15 m, the pore pressure in front of the pile is the largest, while at the point 0.1 m below the bottom of the pile, the largest pore pressure occurs behind the pile
    corecore