32 research outputs found

    Microbiome and skin biology

    Get PDF
    Purpose of review: The skin is home to a diverse milieu of bacteria, fungi, viruses, bacteriophages, and archaeal communities. The application of culture-independent approaches has revolutionized the characterization of the skin microbiome and have revealed a previously underappreciated phylogenetic and functional granularity of skin-associated microbes in both health and disease states. Recent findings: The physiology of a given skin-niche drives the site-specific differences in bacterial phyla composition of healthy skin. Changes in the skin microbiome have consistently been associated with atopic dermatitis. In particular, Staphylococcus aureus overgrowth with concomitant decline in Staphylococcus epidermidis is a general feature associated with atopic dermatitis and is not restricted to eczematous lesions. Changes in fungal species are now also being described. Changes in the composition and metabolic activity of the gut microbiota are associated with skin health. Summary: We are now beginning to appreciate the intimate and intricate interactions between microbes and skin health. Multiple studies are currently focused on the manipulation of the skin or gut microbiome to explore their therapeutic potential in the prevention and treatment of skin inflammation

    Rural and urban exposures shape early life immune development in South African children with atopic dermatitis and nonallergic children

    Get PDF
    Background Immunological traits and functions have been consistently associated with environmental exposures and are thought to shape allergic disease susceptibility and protection. In particular, specific exposures in early life may have more significant effects on the developing immune system, with potentially long‐term impacts. Methods We performed RNA‐Seq on peripheral blood mononuclear cells (PBMCs) from 150 children with atopic dermatitis and healthy nonallergic children in rural and urban settings from the same ethnolinguistic AmaXhosa background in South Africa. We measured environmental exposures using questionnaires. Results A distinct PBMC gene expression pattern was observed in those children with atopic dermatitis (132 differentially expressed genes [DEGs]). However, the predominant influences on the immune cell transcriptome were related to early life exposures including animals, time outdoors, and types of cooking and heating fuels. Sample clustering revealed two rural groups (Rural_1 and Rural_2) that separated from the urban group (3413 and 2647 DEGs, respectively). The most significantly regulated pathways in Rural_1 children were related to innate activation of the immune system (e.g., TLR and cytokine signaling), changes in lymphocyte polarization (e.g., TH17 cells), and immune cell metabolism (i.e., oxidative phosphorylation). The Rural_2 group displayed evidence for ongoing lymphocyte activation (e.g., T cell receptor signaling), with changes in immune cell survival and proliferation (e.g., mTOR signaling, insulin signaling). Conclusions This study highlights the importance of the exposome on immune development in early life and identifies potentially protective (e.g., animal) exposures and potentially detrimental (e.g., pollutant) exposures that impact key immunological pathways

    Atopic dermatitis and food sensitization in South African toddlers: Role of fiber and gut microbiota

    Get PDF
    The pathogenesis of atopic dermatitis (AD) is complex and related to allergic responses and defects in skin barrier function. In common with many atopic diseases, the prevalence of AD has been increasing across the world.1 One of the theories for this increase is increased hygiene and urbanization-related changes in the environment, which can affect the human microbiome.2 Previous studies have found associations between the composition of the early gut microbiome and development of atopic conditions, including AD.3 Although the rate of atopic conditions, including AD and food allergy, is increasing on all continents, the prevalence of these diseases is still lower in African countries.1 This is especially interesting because individuals of African origin who live in Western countries, such as African Americans, are at a higher risk for severe AD.4 This variation places Africa in a special position; studying African populations is necessary not only to find ways to prevent increases of allergy conditions in African countries but also to provide important clues to the causes of this global increasing of allergic conditions. Young children who have developed AD in African communities with a low incidence of atopic disease might be the transitional group. In the current study, we have, for the first time to our knowledge, analyzed the fecal microbiota composition of a group of young black African children aged 12 to 36 months old with and without AD living in the same community in Cape Town, South Africa. Our primary goal was to examine whether toddlers with AD and control toddlers from Cape Town have different microbiomes in terms of bacterial richness and diversity. We also aimed to investigate the differences in the relative abundance for different operational taxonomic units between these 2 groups. In our subgroup analyses, we further tested the effect of multiple environmental factors on the gut microbiome in these children

    A high-risk gut microbiota configuration associates with fatal hyperinflammatory immune and metabolic responses to SARS-CoV-2.

    Get PDF
    Protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and associated clinical sequelae requires well-coordinated metabolic and immune responses that limit viral spread and promote recovery of damaged systems. However, the role of the gut microbiota in regulating these responses has not been thoroughly investigated. In order to identify mechanisms underpinning microbiota interactions with host immune and metabolic systems that influence coronavirus disease 2019 (COVID-19) outcomes, we performed a multi-omics analysis on hospitalized COVID-19 patients and compared those with the most severe outcome (i.e. death, n = 41) to those with severe non-fatal disease (n = 89), or mild/moderate disease (n = 42), that recovered. A distinct subset of 8 cytokines (e.g. TSLP) and 140 metabolites (e.g. quinolinate) in sera identified those with a fatal outcome to infection. In addition, elevated levels of multiple pathobionts and lower levels of protective or anti-inflammatory microbes were observed in the fecal microbiome of those with the poorest clinical outcomes. Weighted gene correlation network analysis (WGCNA) identified modules that associated severity-associated cytokines with tryptophan metabolism, coagulation-linked fibrinopeptides, and bile acids with multiple pathobionts, such as Enterococcus. In contrast, less severe clinical outcomes are associated with clusters of anti-inflammatory microbes such as Bifidobacterium or Ruminococcus, short chain fatty acids (SCFAs) and IL-17A. Our study uncovered distinct mechanistic modules that link host and microbiome processes with fatal outcomes to SARS-CoV-2 infection. These features may be useful to identify at risk individuals, but also highlight a role for the microbiome in modifying hyperinflammatory responses to SARS-CoV-2 and other infectious agents

    Microbiome and asthma

    Get PDF
    The mucosal immune system is in constant communication with the vast diversity of microbes present on body surfaces. The discovery of novel molecular mechanisms, which mediate host-microbe communication, have highlighted the important roles played by microbes in influencing mucosal immune responses. Dendritic cells, epithelial cells, ILCs, T regulatory cells, effector lymphocytes, NKT cells and B cells can all be influenced by the microbiome. Many of the mechanisms being described are bacterial strain- or metabolite-specific. Microbial dysbiosis in the gut and the lung is increasingly being associated with the incidence and severity of asthma. More accurate endotyping of patients with asthma may be assisted by further analysis of the composition and metabolic activity of an individual's microbiome. In addition, the efficacy of specific therapeutics may be influenced by the microbiome and novel bacterial-based therapeutics should be considered in future clinical studies

    Recent developments and highlights in mechanisms of allergic diseases: Microbiome

    Full text link
    All body surfaces are exposed to a wide variety of microbes, which significantly influence immune reactivity within the host. This review provides an update on some of the critical novel findings that have been published on the influence of the microbiome on atopic dermatitis, food allergy and asthma. Microbial dysbiosis has consistently been observed in the skin, gut and lungs of patients with atopic dermatitis, food allergy and asthma, respectively, and the role of specific microbes in allergic disorders is being intensively investigated. However, many of these discoveries have yet to be translated into routine clinical practice
    corecore