162 research outputs found

    RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes

    Get PDF
    Continued antibody gene rearrangement, termed receptor editing, is an important mechanism of central B cell tolerance that may be defective in some autoimmune individuals. We describe a quantitative assay for recombining sequence (RS) rearrangement that we use to estimate levels of antibody light chain receptor editing in various B cell populations. RS rearrangement is a recombination of a noncoding gene segment in the κ antibody light chain locus. RS rearrangement levels are highest in the most highly edited B cells, and are inappropriately low in autoimmune mouse models of systemic lupus erythematosus (SLE) and type 1 diabetes (T1D), including those without overt disease. Low RS rearrangement levels are also observed in human subjects with SLE or T1D

    Eureka and beyond: mining's impact on African urbanisation

    Get PDF
    This collection brings separate literatures on mining and urbanisation together at a time when both artisanal and large-scale mining are expanding in many African economies. While much has been written about contestation over land and mineral rights, the impact of mining on settlement, notably its catalytic and fluctuating effects on migration and urban growth, has been largely ignored. African nation-states’ urbanisation trends have shown considerable variation over the past half century. The current surge in ‘new’ mining countries and the slow-down in ‘old’ mining countries are generating some remarkable settlement patterns and welfare outcomes. Presently, the African continent is a laboratory of national mining experiences. This special issue on African mining and urbanisation encompasses a wide cross-section of country case studies: beginning with the historical experiences of mining in Southern Africa (South Africa, Zambia, Zimbabwe), followed by more recent mineralizing trends in comparatively new mineral-producing countries (Tanzania) and an established West African gold producer (Ghana), before turning to the influence of conflict minerals (Angola, the Democratic Republic of Congo and Sierra Leone)

    Status of the SOLEIL femtosecond X-ray source

    No full text
    http://accelconf.web.cern.ch/AccelConf/FEL2012/papers/wepd04.pdfInternational audienceAn electron bunch slicing setup is presently under construction on the SOLEIL storage ring for delivering 100 fs (rms) long photon pulses to two undulator-based beamlines providing soft (TEMPO) and hard X-rays (CRISTAL). Thanks to the non-zero dispersion function present in all straight sections of the storage ring, the sliced bunches can be easily separated from the core bunches. The modulator is a wiggler composed of 20 periods of 164.4 mm. It produces a magnetic field of 1.8 T at a minimum gap of 14.5 mm. To modulate the kinetic energy of the electrons in the wiggler, a Ti:Sa laser will be used, which produces 50 fs pulses at 800 nm with a repetition rate of 2.5 kHz. The laser beam is splitted into two branches in order to provide 2 mJ to the modulator and 0.5 mJ as pump pulse for the CRISTAL and TEMPO end stations. Focusing optics and beam path, from the laser hutch to the inside of the storage ring tunnel are presently under finalization. In this paper, we will report on the specificities of the SOLEIL setup, the status of its installation and the expected performances

    Identifying the components of the solid–electrolyte interphase in Li-ion batteries

    Get PDF
    The importance of the solid–electrolyte interphase (SEI) for reversible operation of Li-ion batteries has been well established, but the understanding of its chemistry remains incomplete. The current consensus on the identity of the major organic SEI component is that it consists of lithium ethylene di-carbonate (LEDC), which is thought to have high Li-ion conductivity, but low electronic conductivity (to protect the Li/C electrode). Here, we report on the synthesis and structural and spectroscopic characterizations of authentic LEDC and lithium ethylene mono-carbonate (LEMC). Direct comparisons of the SEI grown on graphite anodes suggest that LEMC, instead of LEDC, is likely to be the major SEI component. Single-crystal X-ray diffraction studies on LEMC and lithium methyl carbonate (LMC) reveal unusual layered structures and Li+ coordination environments. LEMC has Li+ conductivities of >1 × 10−6 S cm−1, while LEDC is almost an ionic insulator. The complex interconversions and equilibria of LMC, LEMC and LEDC in dimethyl sulfoxide solutions are also investigated
    corecore