25 research outputs found

    Complement C4 Copy Number Variation is Linked to SSA/Ro and SSB/La Autoantibodies in Systemic Inflammatory Autoimmune Diseases

    Get PDF
    Objective Copy number variation of the C4 complement components, C4A and C4B, has been associated with systemic inflammatory autoimmune diseases. This study was undertaken to investigate whether C4 copy number variation is connected to the autoimmune repertoire in systemic lupus erythematosus (SLE), primary Sjögren's syndrome (SS), or myositis. Methods Using targeted DNA sequencing, we determined the copy number and genetic variants of C4 in 2,290 well-characterized Scandinavian patients with SLE, primary SS, or myositis and 1,251 healthy controls. Results A prominent relationship was observed between C4A copy number and the presence of SSA/SSB autoantibodies, which was shared between the 3 diseases. The strongest association was detected in patients with autoantibodies against both SSA and SSB and 0 C4A copies when compared to healthy controls (odds ratio [OR] 18.0 [95% confidence interval (95% CI) 10.2–33.3]), whereas a weaker association was seen in patients without SSA/SSB autoantibodies (OR 3.1 [95% CI 1.7–5.5]). The copy number of C4 correlated positively with C4 plasma levels. Further, a common loss-of-function variant in C4A leading to reduced plasma C4 was more prevalent in SLE patients with a low copy number of C4A. Functionally, we showed that absence of C4A reduced the individuals’ capacity to deposit C4b on immune complexes. Conclusion We show that a low C4A copy number is more strongly associated with the autoantibody repertoire than with the clinically defined disease entities. These findings may have implications for understanding the etiopathogenetic mechanisms of systemic inflammatory autoimmune diseases and for patient stratification when taking the genetic profile into account.publishedVersio

    Immunogenetics in systemic lupus erythematosus : Transitioning from genetic associations to cellular effects

    No full text
    Abstract Systemic lupus erythematosus (SLE) is a heterogeneous rheumatic autoimmune disease. Genetic studies have identified up to 100 SLE risk loci. Many of these encode proteins of importance in the immune system, but the cellular and molecular mechanisms underlying these associations are still elusive. In this review, we will highlight some of the SLE risk loci where mechanistic insights have been achieved recently by linking genetic risk polymorphisms to cellular or molecular phenotypes important for the disease process

    Autoantibodies to Killer Cell Immunoglobulin-Like Receptors in Patients With Systemic Lupus Erythematosus Induce Natural Killer Cell Hyporesponsiveness

    No full text
    Natural killer (NK) cell cytotoxicity toward self-cells is restrained by the inhibitory HLA class I-binding receptors CD94/NKG2A and the killer cell immunoglobulin-like receptors (KIRs). CD94/NKG2A and KIRs are also essential for NK cell education, which is a dynamic functional maturation process where a constitutive binding of inhibitory receptors to cognate HLA class I molecules is required for NK cells to maintain their full cytotoxic capacity. Previously, we described autoantibodies to CD94/NKG2A in patients with systemic lupus erythematosus (SLE). In this study we analyzed sera from 191 patients with SLE, 119 patients with primary Sjogren's syndrome (pSS), 48 patients with systemic sclerosis (SSc), and 100 healthy donors (HD) for autoantibodies to eight different KIRs. Anti-KIR autoantibodies were identified in sera from 23.0% of patients with SLE, 10.9% of patients with pSS, 12.5% of patients with SSc, and 3.0% of HD. IgG from anti-KIR-positive SLE patients reduced the degranulation and cytotoxicity of NK cells toward K562 tumor cells. The presence of anti-KIR-autoantibodies reacting with >3 KIRs was associated with an increased disease activity (p < 0.0001), elevated serum levels of IFN-alpha (p < 0.0001), nephritis (p = 0.001), and the presence of anti-Sm (p = 0.007), and anti-RNP (p = 0.003) autoantibodies in serum. Together these findings suggest that anti-KIR autoantibodies may contribute to the reduced function of NK cells in SLE patients, and that a defective NK cell function may be a risk factor for the development of lupus nephritis

    Combined genetic deficiencies of the classical complement pathway are strongly associated with both systemic lupus erythematosus and primary Sjögren's syndrome

    No full text
    ObjectiveComplete genetic deficiency of the complement component C2 is a strong risk factor for monogenic systemic lupus erythematosus (SLE), but whether heterozygous C2 deficiency adds to the risk of SLE or primary Sjögren's syndrome (pSS) has not been studied systematically. Here we investigated heterozygous C2 deficiency and C4 copy number variation in relation to clinical manifestations in SLE and pSS.MethodsThe presence of the common 28-bp C2 deletion rs9332736 and C4 copy number variation was examined in Scandinavian patients diagnosed with SLE (n=958) or pSS (n=911), and 2,262 controls using DNA sequencing. Plasma concentration of complement proteins and classical complement function was analysed in a subgroup of patients.ResultsHeterozygous C2 deficiency – when present in combination with a low C4A copy number – substantially increased the risk of SLE (OR=10.2, CI95%: 3.5-37.0) and pSS (OR=13.0, CI95%: 4.5-48.4) when compared to individuals with two C4A copies and normal C2. For patients heterozygous for rs9332736 with one C4A copy, the median age of diagnosis was 7 years and 12 years earlier in SLE and pSS, respectively. Reduced plasma C2 (p=2x10-9) and impaired function of the classical complement pathway (p=0.03) was detected in SLE patients with heterozygous C2 deficiency. Finally, we describe a pSS patient with homozygous C2 deficiency.ConclusionWe demonstrate that the combination of partial deficiencies of C2 and C4A in the classical complement pathway is a strong risk factor for SLE and pSS. Our results emphasise the central role of the complement system in the pathogenesis of both diseases

    Function of multiple sclerosis-protective HLA class I alleles revealed by genome-wide protein-quantitative trait loci mapping of interferon signalling

    No full text
    Interferons (IFNs) are cytokines that are central to the host defence against viruses and other microorganisms. If not properly regulated, IFNs may contribute to the pathogenesis of inflammatory autoimmune, or infectious diseases. To identify genetic polymorphisms regulating the IFN system we performed an unbiased genome-wide protein-quantitative trait loci (pQTL) mapping of cell-type specific type I and type II IFN receptor levels and their responses in immune cells from 303 healthy individuals. Seven genome-wide significant (p < 5.0E-8) pQTLs were identified. Two independent SNPs that tagged the multiple sclerosis (MS)-protective HLA class I alleles A*02/A*68 and B*44, respectively, were associated with increased levels of IFNAR2 in B and T cells, with the most prominent effect in IgD–CD27+ memory B cells. The increased IFNAR2 levels in B cells were replicated in cells from an independent set of healthy individuals and in MS patients. Despite increased IFNAR2 levels, B and T cells carrying the MS-protective alleles displayed a reduced response to type I IFN stimulation. Expression and methylation-QTL analysis demonstrated increased mRNA expression of the pseudogene HLA-J in B cells carrying the MS-protective class I alleles, possibly driven via methylation-dependent transcriptional regulation. Together these data suggest that the MS-protective effects of HLA class I alleles are unrelated to their antigen-presenting function, and propose a previously unappreciated function of type I IFN signalling in B and T cells in MS immune-pathogenesis. Author summary Genetic association studies have been very successful in identifying disease-associated single nucleotide polymorphisms (SNPs), but it has been challenging to define the molecular mechanisms underlying these associations. As interferons (IFNs) have a central role in the immune system, we hypothesized that some of the SNPs associated to immune-mediated diseases would affect the IFN system. By combining genetic data with characterization of interferon receptor levels and their responses on the protein level in immune cells from 303 genotyped healthy individuals, we show that two SNPs tagging the HLA class I alleles A*02/A*68 and B*44 are associated with a decreased response to type I IFN stimulation in B cells and T cells. Notably, both HLA-A*02 and HLA-B*44 confer protection from developing multiple sclerosis (MS), which is a chronic inflammatory neurologic disease. In addition to suggesting a pathogenic role of enhanced type I interferon signalling in B cells and T cells in MS, our data emphasize the fact that genetic associations in the HLA locus can affect functions not directly associated to antigen presentation, which conceptually may be important for other diseases genetically associated to the HLA locus

    Aberrant plasma IL-7 and soluble IL-7 receptor levels indicate impaired T-cell response to IL-7 in human tuberculosis

    No full text
    <div><p>T-cell proliferation and generation of protective memory during chronic infections depend on Interleukin-7 (IL-7) availability and receptivity. Regulation of IL-7 receptor (IL-7R) expression and signalling are key for IL-7-modulated T-cell functions. Aberrant expression of soluble (s) and membrane-associated (m) IL-7R molecules is associated with development of autoimmunity and immune failure in acquired immune deficiency syndrome (AIDS) patients. Here we investigated the role of IL-7/IL-7R on T-cell immunity in human tuberculosis. We performed two independent case-control studies comparing tuberculosis patients and healthy contacts. This was combined with follow-up examinations for a subgroup of tuberculosis patients under therapy and recovery. Blood plasma and T cells were characterised for IL-7/sIL-7R and mIL-7R expression, respectively. IL-7-dependent T-cell functions were determined by analysing STAT5 phosphorylation, antigen-specific cytokine release and by analysing markers of T-cell exhaustion and inflammation. Tuberculosis patients had lower soluble IL-7R (p < 0.001) and higher IL-7 (p < 0.001) plasma concentrations as compared to healthy contacts. Both markers were largely independent and aberrant expression normalised during therapy and recovery. Furthermore, tuberculosis patients had lower levels of mIL-7R in T cells caused by post-transcriptional mechanisms. Functional <i>in vitro</i> tests indicated diminished IL-7-induced STAT5 phosphorylation and impaired IL-7-promoted cytokine release of <i>Mycobacterium tuberculosis</i>-specific CD4<sup>+</sup> T cells from tuberculosis patients. Finally, we determined T-cell exhaustion markers PD-1 and SOCS3 and detected increased SOCS3 expression during therapy. Only moderate correlation of PD-1 and SOCS3 with IL-7 expression was observed. We conclude that diminished soluble IL-7R and increased IL-7 plasma concentrations, as well as decreased membrane-associated IL-7R expression in T cells, reflect impaired T-cell sensitivity to IL-7 in tuberculosis patients. These findings show similarities to pathognomonic features of impaired T-cell functions and immune failure described in AIDS patients.</p></div

    The HLA region in ANCA-associated vasculitis : characterisation of genetic associations in a Scandinavian patient population

    No full text
    Objective: The antineutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are inflammatory disorders with ANCA autoantibodies recognising either proteinase 3 (PR3-AAV) or myeloperoxidase (MPO-AAV). PR3-AAV and MPO-AAV have been associated with distinct loci in the human leucocyte antigen (HLA) region. While the association between MPO-AAV and HLA has been well characterised in East Asian populations where MPO-AAV is more common, studies in populations of European descent are limited. The aim of this study was to thoroughly characterise associations to the HLA region in Scandinavian patients with PR3-AAV as well as MPO-AAV. Methods: Genotypes of single-nucleotide polymorphisms (SNPs) located in the HLA region were extracted from a targeted exome-sequencing dataset comprising Scandinavian AAV cases and controls. Classical HLA alleles were called using xHLA. After quality control, association analyses were performed of a joint SNP/classical HLA allele dataset for cases with PR3-AAV (n=411) and MPO-AAV (n=162) versus controls (n=1595). Disease-associated genetic variants were analysed for association with organ involvement, age at diagnosis and relapse, respectively. Results: PR3-AAV was significantly associated with both HLA-DPB1*04:01 and rs1042335 at the HLA-DPB1 locus, also after stepwise conditional analysis. MPO-AAV was significantly associated with HLA-DRB1*04:04. Neither carriage of HLA-DPB1*04:01 alleles in PR3-AAV nor of HLA-DRB1*04:04 alleles in MPO-AAV were associated with organ involvement, age at diagnosis or relapse. Conclusions: The association to the HLA region was distinct in Scandinavian cases with MPO-AAV compared with cases of East Asian descent. In PR3-AAV, the two separate signals of association to the HLD-DPB1 region mediate potentially different functional effects

    PD-1 and SOCS3 mRNA expression of CD4+ T cells from tuberculosis patients and healthy contacts.

    No full text
    <p>The expression of PD-1 <b>(a)</b> and SOCS3 <b>(c)</b> was determined for mRNA isolated from CD4<sup>+</sup> T cells, using Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a reference. Cycle threshold differences (2<sup>-ΔCt</sup>) are shown for healthy contacts [n = 117 (PD-1), n = 119 (SOCS3)], and for tuberculosis patients prior to (0 months, n = 40), during (2 months, n = 28), and after (6 months, n = 17) treatment. Median and interquartile range is depicted. Spearman correlation between plasma IL-7 and <b>(b)</b> PD-1 or <b>(d)</b> SOCS3 for healthy contacts (circles) or tuberculosis patients (squares) prior to treatment. Each symbol indicates mean values of duplicates from each individual donor. Due to a low overlap between tuberculosis patients, exact Mann-Whitney U test used for comparison of all groups. Nominal p-values are indicated as * p < 0.05, ** p < 0.01, *** p < 0.001.</p
    corecore