2,255 research outputs found
Enhancement of thermoelectric properties by energy filtering: Theoretical potential and experimental reality in nanostructured ZnSb
Energy filtering has been suggested by many authors as a means to improve
thermoelectric properties. The idea is to filter away low-energy charge
carriers in order to increase Seebeck coefficient without compromising
electronic conductivity. This concept was investigated in the present paper for
a specific material (ZnSb) by a combination of first-principles atomic-scale
calculations, Boltzmann transport theory, and experimental studies of the same
system. The potential of filtering in this material was first quantified, and
it was as an example found that the power factor could be enhanced by an order
of magnitude when the filter barrier height was 0.5~eV. Measured values of the
Hall carrier concentration in bulk ZnSb were then used to calibrate the
transport calculations, and nanostructured ZnSb with average grain size around
70~nm was processed to achieve filtering as suggested previously in the
literature. Various scattering mechanisms were employed in the transport
calculations and compared with the measured transport properties in
nanostructured ZnSb as a function of temperature. Reasonable correspondence
between theory and experiment could be achieved when a combination of constant
lifetime scattering and energy filtering with a 0.25~eV barrier was employed.
However, the difference between bulk and nanostructured samples was not
sufficient to justify the introduction of an energy filtering mechanism. The
reasons for this and possibilities to achieve filtering were discussed in the
paper
Decoherence due to contacts in ballistic nanostructures
The active region of a ballistic nanostructure is an open quantum-mechanical
system, whose nonunitary evolution (decoherence) towards a nonequilibrium
steady state is determined by carrier injection from the contacts. The purpose
of this paper is to provide a simple theoretical description of the
contact-induced decoherence in ballistic nanostructures, which is established
within the framework of the open systems theory. The active region's evolution
in the presence of contacts is generally non-Markovian. However, if the
contacts' energy relaxation due to electron-electron scattering is sufficiently
fast, then the contacts can be considered memoryless on timescales coarsened
over their energy relaxation time, and the evolution of the current-limiting
active region can be considered Markovian. Therefore, we first derive a general
Markovian map in the presence of a memoryless environment, by coarse-graining
the exact short-time non-Markovian dynamics of an abstract open system over the
environment memory-loss time, and we give the requirements for the validity of
this map. We then introduce a model contact-active region interaction that
describes carrier injection from the contacts for a generic two-terminal
ballistic nanostructure. Starting from this model interaction and using the
Markovian dynamics derived by coarse-graining over the effective memory-loss
time of the contacts, we derive the formulas for the nonequilibrium
steady-state distribution functions of the forward and backward propagating
states in the nanostructure's active region. On the example of a double-barrier
tunneling structure, the present approach yields an I-V curve with all the
prominent resonant features. The relationship to the Landauer-B\"{u}ttiker
formalism is also discussed, as well as the inclusion of scattering.Comment: Published versio
Variable domain N-linked glycosylation and negative surface charge are key features of monoclonal ACPA: implications for B-cell selection
Autoreactive B cells have a central role in the pathogenesis of rheumatoid
arthritis (RA), and recent findings have proposed that anti-citrullinated
protein autoantibodies (ACPA) may be directly pathogenic. Herein, we
demonstrate the frequency of variable-region glycosylation in single-cell
cloned mAbs. A total of 14 ACPA mAbs were evaluated for predicted N-linked
glycosylation motifs in silico and compared to 452 highly-mutated mAbs from RA
patients and controls. Variable region N-linked motifs (N-X-S/T) were
strikingly prevalent within ACPA (100%) compared to somatically hypermutated
(SHM) RA bone marrow plasma cells (21%), and synovial plasma cells from
seropositive (39%) and seronegative RA (7%). When normalized for SHM, ACPA
still had significantly higher frequency of N-linked motifs compared to all
studied mAbs including highly-mutated HIV broadly-neutralizing and
malaria-associated mAbs. The Fab glycans of ACPA-mAbs were highly sialylated,
contributed to altered charge, but did not influence antigen binding. The
analysis revealed evidence of unusual B-cell selection pressure and
SHM-mediated decreased in surface charge and isoelectric point in ACPA. It is
still unknown how these distinct features of anti-citrulline immunity may have
an impact on pathogenesis. However, it is evident that they offer selective
advantages for ACPA+ B cells, possibly also through non-antigen driven
mechanisms
Modeling a Schottky-barrier carbon nanotube field-effect transistor with ferromagnetic contacts
In this study, a model of a Schottky-barrier carbon nanotube field- effect
transistor (CNT-FET), with ferromagnetic contacts, has been developed. The
emphasis is put on analysis of current-voltage characteristics as well as shot
(and thermal) noise. The method is based on the tight-binding model and the
non- equilibrium Green's function technique. The calculations show that, at
room temperature, the shot noise of the CNT FET is Poissonian in the
sub-threshold region, whereas in elevated gate and drain/source voltage regions
the Fano factor gets strongly reduced. Moreover, transport properties strongly
depend on relative magnetization orientations in the source and drain contacts.
In particular, one observes quite a large tunnel magnetoresistance, whose
absolute value may exceed 50%.Comment: 8 pages, 4 figure
Thermoelectric properties of the bismuth telluride nanowires in the constant-relaxation-time approximation
Electronic structure of bismuth telluride nanowires with the growth
directions [110] and [015] is studied in the framework of anisotropic effective
mass method using the parabolic band approximation. The components of the
electron and hole effective mass tensor for six valleys are calculated for both
growth directions. For a square nanowire, in the temperature range from 77 K to
500 K, the dependence of the Seebeck coefficient, the electron thermal and
electrical conductivity as well as the figure of merit ZT on the nanowire
thickness and on the excess hole concentration are investigated in the
constant-relaxation-time approximation. The carrier confinement is shown to
play essential role for square nanowires with thickness less than 30 nm. The
confinement decreases both the carrier concentration and the thermal
conductivity but increases the maximum value of Seebeck coefficient in contrast
to the excess holes (impurities). The confinement effect is stronger for the
direction [015] than for the direction [110] due to the carrier mass difference
for these directions. The carrier confinement increases maximum value of ZT and
shifts it towards high temperatures. For the p-type bismuth telluride nanowires
with growth direction [110], the maximum value of the figure of merit is equal
to 1.3, 1.6, and 2.8, correspondingly, at temperatures 310 K, 390 K, 480 K and
the nanowire thicknesses 30 nm, 15 nm, and 7 nm. At the room temperature, the
figure of merit equals 1.2, 1.3, and 1.7, respectively.Comment: 13 pages, 7 figures, 2 tables, typos added, added references for
sections 2-
Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b
[Context] The first detection of an atmosphere around an extrasolar planet
was presented by Charbonneau and collaborators in 2002. In the optical
transmission spectrum of the transiting exoplanet HD209458b, an absorption
signal from sodium was measured at a level of 0.023+-0.006%, using the STIS
spectrograph on the Hubble Space Telescope. Despite several attempts, so far
only upper limits to the Na D absorption have been obtained using telescopes
from the ground, and the HST result has yet to be confirmed.
[Aims] The aims of this paper are to re-analyse data taken with the High
Dispersion Spectrograph on the Subaru telescope, to correct for systematic
effects dominating the data quality, and to improve on previous results
presented in the literature.
[Methods] The data reduction process was altered in several places, most
importantly allowing for small shifts in the wavelength solution. The relative
depth of all lines in the spectra, including the two sodium D lines, are found
to correlate strongly with the continuum count level in the spectra. These
variations are attributed to non-linearity effects in the CCDs. After removal
of this empirical relation the uncertainties in the line depths are only a
fraction above that expected from photon statistics.
[Results] The sodium absorption due to the planet's atmosphere is detected at
>5 sigma, at a level of 0.056+-0.007% (2x3.0 Ang band), 0.070+-0.011% (2x1.5
Ang band), and 0.135+-0.017% (2x0.75 Ang band). There is no evidence that the
planetary absorption signal is shifted with respect to the stellar absorption,
as recently claimed for HD189733b. The measurements in the two most narrow
bands indicate that some signal is being resolved.[abridged]Comment: Latex, 7 pages: accepted for publication in Astronomy & Astrophysic
Pulmonary Epithelial Integrity in Children: Relationship to Ambient Ozone Exposure and Swimming Pool Attendance
Airway irritants such as ozone are known to impair lung function and induce airway inflammation. Clara cell protein (CC16) is a small anti-inflammatory protein secreted by the nonciliated bronchiolar Clara cells. CC16 in serum has been proposed as a noninvasive and sensitive marker of lung epithelial injury. In this study, we used lung function and serum CC16 concentration to examine the pulmonary responses to ambient O(3) exposure and swimming pool attendance. The measurements were made on 57 children 10–11 years of age before and after outdoor exercise for 2 hr. Individual O(3) exposure was estimated as the total exposure dose between 0700 hr until the second blood sample was obtained (mean O(3) concentration/m(3) × hours). The maximal 1-hr value was 118 μg/m(3) (59 ppb), and the individual exposure dose ranged between 352 and 914 μg/m(3)hr. These O(3) levels did not cause any significant changes in mean serum CC16 concentrations before or after outdoor exercise, nor was any decrease in lung function detected. However, children who regularly visited chlorinated indoor swimming pools had significantly lower CC16 levels in serum than did nonswimming children both before and after exercise (respectively, 57 ± 2.4 and 53 ± 1.7 μg/L vs. 8.2 ± 2.8 and 8.0 ± 2.6 μg/L; p < 0.002). These results indicate that repeated exposure to chlorination by-products in the air of indoor swimming pools has adverse effects on the Clara cell function in children. A possible relation between such damage to Clara cells and pulmonary morbidity (e.g., asthma) should be further investigated
Interaction-induced chaos in a two-electron quantum-dot system
A quasi-one-dimensional quantum dot containing two interacting electrons is
analyzed in search of signatures of chaos. The two-electron energy spectrum is
obtained by diagonalization of the Hamiltonian including the exact Coulomb
interaction. We find that the level-spacing fluctuations follow closely a
Wigner-Dyson distribution, which indicates the emergence of quantum signatures
of chaos due to the Coulomb interaction in an otherwise non-chaotic system. In
general, the Poincar\'e maps of a classical analog of this quantum mechanical
problem can exhibit a mixed classical dynamics. However, for the range of
energies involved in the present system, the dynamics is strongly chaotic,
aside from small regular regions. The system we study models a realistic
semiconductor nanostructure, with electronic parameters typical of gallium
arsenide.Comment: 4 pages, 3ps figure
Silicon-based molecular electronics
Molecular electronics on silicon has distinct advantages over its metallic
counterpart. We describe a theoretical formalism for transport through
semiconductor-molecule heterostructures, combining a semi-empirical treatment
of the bulk silicon bandstructure with a first-principles description of the
molecular chemistry and its bonding with silicon. Using this method, we
demonstrate that the presence of a semiconducting band-edge can lead to a novel
molecular resonant tunneling diode (RTD) that shows negative differential
resistance (NDR) when the molecular levels are driven by an STM potential into
the semiconducting band-gap. The peaks appear for positive bias on a p-doped
and negative for an n-doped substrate. Charging in these devices is compromised
by the RTD action, allowing possible identification of several molecular
highest occupied (HOMO) and lowest unoccupied (LUMO) levels. Recent experiments
by Hersam et al. [1] support our theoretical predictions.Comment: Author list is reverse alphabetical. All authors contributed equally.
Email: rakshit/liangg/ ghosha/[email protected]
- …
