1,974 research outputs found
Grace DAKASEP alkaline battery separator
The Grace DAKASEP separator was originally developed as a wicking layer for nickel-zinc alkaline batteries. The DAKASEP is a filled non-woven separator which is flexible and heat sealable. Through modification of formulation and processing variables, products with a variety of properties can be produced. Variations of DAKASEP were tested in Ni-H2, Ni-Zn, Ni-Cd, and primary alkaline batteries with good results. The properties of DAKASEP which are optimized for Hg-Zn primary batteries are shown in tabular form. This separator has high tensile strength, 12 micron average pore size, relatively low porosity at 46-48 percent, and consequently moderately high resistivity. Versions were produced with greater than 70 percent porosity and resistivities in 33 wt percent KOH as low as 3 ohm cm. Performance data for Hg-Zn E-1 size cells containing DAKASEP with the properties shown in tabular form, are more reproducible than data obtained with a competitive polypropylene non-woven separator. In addition, utilization of active material is in general considerably improved
Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays
For the first time a proper comparison of the average depth of shower maximum
() published by the Pierre Auger and Telescope Array Observatories
is presented. The distributions measured by the Pierre Auger
Observatory were fit using simulated events initiated by four primaries
(proton, helium, nitrogen and iron). The primary abundances which best describe
the Auger data were simulated through the Telescope Array (TA) Middle Drum (MD)
fluorescence and surface detector array. The simulated events were analyzed by
the TA Collaboration using the same procedure as applied to their data. The
result is a simulated version of the Auger data as it would be observed by TA.
This analysis allows a direct comparison of the evolution of with energy of both data sets. The
measured by TA-MD is consistent with a preliminary simulation of the Auger data
through the TA detector and the average difference between the two data sets
was found to be .Comment: To appear in the Proceedings of the UHECR workshop, Springdale USA,
201
Recommended from our members
Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion
The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint URBAN 2003 field experiment and computational fluid dynamics simulations of that experiment. Four releases of sulfur hexafluoride, during two daytime and two nighttime intensive observing periods, are simulated using the building-resolving computational fluid dynamics model, FEM3MP to solve the Reynolds Averaged Navier-Stokes equations with two options of turbulence parameterizations. One option omits stability effects but has a superior turbulence parameterization using a non-linear eddy viscosity (NEV) approach, while the other considers buoyancy effects with a simple linear eddy viscosity (LEV) approach for turbulence parameterization. Model performance metrics are calculated by comparison with observed winds and tracer data in the downtown area, and with observed winds and turbulence kinetic energy (TKE) profiles at a location immediately downwind of the central business district (CBD) in the area we label as the urban shadow. Model predictions of winds, concentrations, profiles of wind speed, wind direction, and friction velocity are generally consistent with and compare reasonably well with the field observations. Simulations using the NEV turbulence parameterization generally exhibit better agreement with observations. To further explore this assumption of a neutrally-stable atmosphere within the urban area, TKE budget profiles slightly downwind of the urban wake region in the 'urban shadow' are examined. Dissipation and shear production are the largest terms which may be calculated directly. The advection of TKE is calculated as a residual; as would be expected downwind of an urban area, the advection of TKE produced within the urban area is a very large term. Buoyancy effects may be neglected in favor of advection, shear production, and dissipation. For three of the IOPs, buoyancy production may be neglected entirely, and for one IOP, buoyancy production contributes approximately 25% of the total TKE at this location. For both nighttime releases, the contribution of buoyancy to the total TKE budget is always negligible though positive. Results from the simulations provide estimates of the average TKE values in the upwind, downtown, downtown shadow, and urban wake zones of the computational domain. These values suggest that building-induced turbulence can cause the average turbulence intensity in the urban area to increase by as much as much as seven times average 'upwind' values, explaining the minimal role of buoyant forcing in the downtown region. The downtown shadow exhibits an exponential decay in average TKE, while the distant downwind wake region approaches the average upwind values. For long-duration releases in downtown and downtown shadow areas, the assumption of neutral stability is valid because building-induced turbulence dominates the budget. However, further downwind in the urban wake region, which we find to be approximately 1500 m beyond the perimeter of downtown Oklahoma City, the levels of building-induced turbulence greatly subside, and therefore the assumption of neutral stability is less valid
Recommended from our members
A STUDY OF STABILITY CONDITIONS IN AN URBAN AREA
Accurate numerical prediction of airflow and tracer dispersion in urban areas depends, to a great extent, on the use of appropriate stability conditions. Due to the lack of relevant field measurements or sufficiently sophisticated turbulence models, modelers often assume that nearly neutral conditions are appropriate to use for the entire urban area being simulated. The main argument for such an assumption is that atmospheric stability (as defined by the Richardson number) is determined by both mechanical stresses and buoyant forcing but, for a typical urban setting with a given thermal stability or sensible heat flux, building-induced mechanical stresses can become so dominant to drive the resulting stability toward nearly neutral conditions. Results from our recent simulations of two Joint URBAN 2003 releases, using a computational fluid dynamics (CFD) model - FEM3MP, appear to support partially the assumption that urban areas tend toward neutral stability. More specifically, based on a model-data comparison for winds and concentration in the near field and velocity and turbulence profiles in the urban wake region, Chan and Lundquist (2005) and Lundquist and Chan (2005) observed that neutral stability assumption appears to be valid for intensive operation period (IOP) 9 (a nighttime release with moderate winds) and also appears to be valid for IOP 3 (a daytime release with strong buoyant forcing) in the urban core area but is less valid in the urban wake region. Our model, developed under the sponsorship of the U.S. Department of Energy (DOE) and Department of Homeland Security (DHS), is based on solving the three-dimensional, time-dependent, incompressible Navier-Stokes equations on massively parallel computer platforms. The numerical algorithm is based on finite-element discretization for effective treatment of complex building geometries and variable terrain, together with a semi-implicit projection scheme and modern iterative solvers developed by Gresho and Chan (1998) for efficient time integration. Physical processes treated in our code include turbulence modeling via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) approaches described in Chan and Stevens (2000), atmospheric stability, aerosols, UV radiation decay, surface energy budgets, and vegetative canopies, etc. Predictions from our model are continuously being verified against measured data from wind tunnel and field experiments. Examples of such studies are discussed in Chan et al. (2001, 2004), Chan and Leach (2004), Calhoun et al. (2004, 2005), and Humphreys et al. (2004). In this study, the stability conditions associated with two more of the Joint URBAN 2003 releases are investigated. Through a model-data comparison of the wind and concentration fields, observed buoyancy production in the urban wake region, together with predicted values of turbulence kinetic energy (TKE) in various regions of the computational domain, a more definitive characterization of stability conditions associated with the simulated releases is presented. In the following, we first discuss briefly the field experiments being simulated, then present sample results from a model-data comparison for both the wind and concentration fields, examine the predicted TKE field and the observed buoyant forcing relative to the total TKE in the urban wake, and finally offer a few concluding remarks including the resulting stability conditions of the simulated releases
Recommended from our members
High-Resolution CFD Simulation of Airflow and Tracer Dispersion in New York City
In 2004, a research project--the New York City Urban Dispersion Program (NYC UDP)--was launched by the Department of Homeland Security with the goal to improve the permanent network of wind stations in and around New York City and to enhance the city's emergency response capabilities. Encompassing both field studies and computer modeling, one of the program's objectives is to improve and validate urban dispersion models using the data collected from field studies and to transfer the improved capabilities to NYC emergency agencies. The first two field studies were conducted in March and August 2005 respectively and an additional study is planned for the summer of 2006. Concurrently model simulations, using simple to sophisticated computational fluid dynamics (CFD) models, have been performed to aid the planning of field studies and also to evaluate the performance of such models. Airflow and tracer dispersion in urban areas such as NYC are extremely complicated. Some of the contributing factors are complex geometry, variable terrain, coupling between local and larger scale flows, deep canyon mixing and updrafts/downdrafts caused by large buildings, street channeling and upstream transport, roof features, and heating effects, etc. Sponsored by the U.S. Department of Energy (DOE) and Department of Homeland Security (DHS), we have developed a CFD model, FEM3MP, to address some of the above complexities. Our model is based on solving the three-dimensional, time-dependent, incompressible Navier-Stokes equations with appropriate physics for modeling airflow and dispersion in the urban environment. Also utilized in the model are finite-element discretization for effective treatment of complex geometries and a semi-implicit projection method for efficient time-integration. A description of the model can be found in Gresho and Chan (1998), Chan and Stevens (2000). Predictions from our model are continuously being verified against data from field studies, such as URBAN 2000 and the Joint URBAN 2003 experiments. Modeling studies comparing simulations to observations from these field experiments are discussed in Chan et al. (2001,2004), Chan and Leach (2004), Chan and Lundquist (2005), Humphreys et al. (2004), Lundquist and Chan (2005)
Determining the Magnetic Field Orientation of Coronal Mass Ejections from Faraday Rotation
We describe a method to measure the magnetic field orientation of coronal
mass ejections (CMEs) using Faraday rotation (FR). Two basic FR profiles,
Gaussian-shaped with a single polarity or "N"-like with polarity reversals, are
produced by a radio source occulted by a moving flux rope depending on its
orientation. These curves are consistent with the Helios observations,
providing evidence for the flux-rope geometry of CMEs. Many background radio
sources can map CMEs in FR onto the sky. We demonstrate with a simple flux rope
that the magnetic field orientation and helicity of the flux rope can be
determined 2-3 days before it reaches Earth, which is of crucial importance for
space weather forecasting. An FR calculation based on global
magnetohydrodynamic (MHD) simulations of CMEs in a background heliosphere shows
that FR mapping can also resolve a CME geometry curved back to the Sun. We
discuss implementation of the method using data from the Mileura Widefield
Array (MWA).Comment: 22 pages with 9 figures, accepted for publication in Astrophys.
Numerical and Experimental Investigation of Circulation in Short Cylinders
In preparation for an experimental study of magnetorotational instability
(MRI) in liquid metal, we explore Couette flows having height comparable to the
gap between cylinders, centrifugally stable rotation, and high Reynolds number.
Experiments in water are compared with numerical simulations. Simulations show
that endcaps corotating with the outer cylinder drive a strong poloidal
circulation that redistributes angular momentum. Predicted azimuthal flow
profiles agree well with experimental measurements. Spin-down times scale with
Reynolds number as expected for laminar Ekman circulation; extrapolation from
two-dimensional simulations at agrees remarkably well with
experiment at . This suggests that turbulence does not dominate
the effective viscosity. Further detailed numerical studies reveal a strong
radially inward flow near both endcaps. After turning vertically along the
inner cylinder, these flows converge at the midplane and depart the boundary in
a radial jet. To minimize this circulation in the MRI experiment, endcaps
consisting of multiple, differentially rotating rings are proposed. Simulations
predict that an adequate approximation to the ideal Couette profile can be
obtained with a few rings
Trkalian fields: ray transforms and mini-twistors
We study X-ray and Divergent beam transforms of Trkalian fields and their
relation with Radon transform. We make use of four basic mathematical methods
of tomography due to Grangeat, Smith, Tuy and Gelfand-Goncharov for an integral
geometric view on them. We also make use of direct approaches which provide a
faster but restricted view of the geometry of these transforms. These reduce to
well known geometric integral transforms on a sphere of the Radon or the
spherical Curl transform in Moses eigenbasis, which are members of an analytic
family of integral operators. We also discuss their inversion. The X-ray (also
Divergent beam) transform of a Trkalian field is Trkalian. Also the Trkalian
subclass of X-ray transforms yields Trkalian fields in the physical space. The
Riesz potential of a Trkalian field is proportional to the field. Hence, the
spherical mean of the X-ray (also Divergent beam) transform of a Trkalian field
over all lines passing through a point yields the field at this point. The
pivotal point is the simplification of an intricate quantity: Hilbert transform
of the derivative of Radon transform for a Trkalian field in the Moses basis.
We also define the X-ray transform of the Riesz potential (of order 2) and
Biot-Savart integrals. Then, we discuss a mini-twistor respresentation,
presenting a mini-twistor solution for the Trkalian fields equation. This is
based on a time-harmonic reduction of wave equation to Helmholtz equation. A
Trkalian field is given in terms of a null vector in C3 with an arbitrary
function and an exponential factor resulting from this reduction.Comment: 37 pages, http://dx.doi.org/10.1063/1.482610
- …