31 research outputs found
Kepler-93b: A Terrestrial World Measured to within 120 km, and a Test Case for a New Spitzer Observing Mode
We present the characterization of the Kepler-93 exoplanetary system, based
on three years of photometry gathered by the Kepler spacecraft. The duration
and cadence of the Kepler observations, in tandem with the brightness of the
star, enable unusually precise constraints on both the planet and its host. We
conduct an asteroseismic analysis of the Kepler photometry and conclude that
the star has an average density of 1.652+/-0.006 g/cm^3. Its mass of
0.911+/-0.033 M_Sun renders it one of the lowest-mass subjects of asteroseismic
study. An analysis of the transit signature produced by the planet Kepler-93b,
which appears with a period of 4.72673978+/-9.7x10^-7 days, returns a
consistent but less precise measurement of the stellar density, 1.72+0.02-0.28
g/cm^3. The agreement of these two values lends credence to the planetary
interpretation of the transit signal. The achromatic transit depth, as compared
between Kepler and the Spitzer Space Telescope, supports the same conclusion.
We observed seven transits of Kepler-93b with Spitzer, three of which we
conducted in a new observing mode. The pointing strategy we employed to gather
this subset of observations halved our uncertainty on the transit radius ratio
R_p/R_star. We find, after folding together the stellar radius measurement of
0.919+/-0.011 R_Sun with the transit depth, a best-fit value for the planetary
radius of 1.481+/-0.019 R_Earth. The uncertainty of 120 km on our measurement
of the planet's size currently renders it one of the most precisely measured
planetary radii outside of the Solar System. Together with the radius, the
planetary mass of 3.8+/-1.5 M_Earth corresponds to a rocky density of 6.3+/-2.6
g/cm^3. After applying a prior on the plausible maximum densities of
similarly-sized worlds between 1--1.5 R_Earth, we find that Kepler-93b
possesses an average density within this group.Comment: 20 pages, 9 figures, accepted for publication in Ap
Kepler-68: Three Planets, One With a Density Between That of Earth and Ice Giants
NASA's Kepler Mission has revealed two transiting planets orbiting Kepler-68.
Follow-up Doppler measurements have established the mass of the innermost
planet and revealed a third jovian-mass planet orbiting beyond the two
transiting planets. Kepler-68b, in a 5.4 day orbit has mass 8.3 +/- 2.3 Earth,
radius 2.31 +/- 0.07 Earth radii, and a density of 3.32 +/- 0.92 (cgs), giving
Kepler-68b a density intermediate between that of the ice giants and Earth.
Kepler-68c is Earth-sized with a radius of 0.953 Earth and transits on a 9.6
day orbit; validation of Kepler-68c posed unique challenges. Kepler-68d has an
orbital period of 580 +/- 15 days and minimum mass of Msin(i) = 0.947 Jupiter.
Power spectra of the Kepler photometry at 1-minute cadence exhibit a rich and
strong set of asteroseismic pulsation modes enabling detailed analysis of the
stellar interior. Spectroscopy of the star coupled with asteroseismic modeling
of the multiple pulsation modes yield precise measurements of stellar
properties, notably Teff = 5793 +/- 74 K, M = 1.079 +/- 0.051 Msun, R = 1.243
+/- 0.019 Rsun, and density 0.7903 +/- 0.0054 (cgs), all measured with
fractional uncertainties of only a few percent. Models of Kepler-68b suggest it
is likely composed of rock and water, or has a H and He envelope to yield its
density of about 3 (cgs).Comment: 32 pages, 13 figures, Accepted to Ap
Kepler-432: a red giant interacting with one of its two long period giant planets
We report the discovery of Kepler-432b, a giant planet ()
transiting an evolved star with an orbital period of days. Radial velocities (RVs) reveal that
Kepler-432b orbits its parent star with an eccentricity of , which we also measure independently with
asterodensity profiling (AP; ), thereby confirming
the validity of AP on this particular evolved star. The well-determined
planetary properties and unusually large mass also make this planet an
important benchmark for theoretical models of super-Jupiter formation.
Long-term RV monitoring detected the presence of a non-transiting outer planet
(Kepler-432c; days), and adaptive optics imaging revealed a nearby
(0\farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf.
The host star exhibits high signal-to-noise asteroseismic oscillations, which
enable precise measurements of the stellar mass, radius and age. Analysis of
the rotational splitting of the oscillation modes additionally reveals the
stellar spin axis to be nearly edge-on, which suggests that the stellar spin is
likely well-aligned with the orbit of the transiting planet. Despite its long
period, the obliquity of the 52.5-day orbit may have been shaped by star-planet
interaction in a manner similar to hot Jupiter systems, and we present
observational and theoretical evidence to support this scenario. Finally, as a
short-period outlier among giant planets orbiting giant stars, study of
Kepler-432b may help explain the distribution of massive planets orbiting giant
stars interior to 1 AU.Comment: 22 pages, 19 figures, 5 tables. Accepted to ApJ on Jan 24, 2015
(submitted Nov 11, 2014). Updated with minor changes to match published
versio
Fundamental Properties of Kepler Planet-Candidate Host Stars using Asteroseismology
We have used asteroseismology to determine fundamental properties for 66
Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in
radius and mass, respectively. The results include new asteroseismic solutions
for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and
Kepler-25) and increase the total number of Kepler host stars with
asteroseismic solutions to 77. A comparison with stellar properties in the
planet-candidate catalog by Batalha et al. shows that radii for subgiants and
giants obtained from spectroscopic follow-up are systematically too low by up
to a factor of 1.5, while the properties for unevolved stars are in good
agreement. We furthermore apply asteroseismology to confirm that a large
majority of cool main-sequence hosts are indeed dwarfs and not misclassified
giants. Using the revised stellar properties, we recalculate the radii for 107
planet candidates in our sample, and comment on candidates for which the radii
change from a previously giant-planet/brown-dwarf/stellar regime to a
sub-Jupiter size, or vice versa. A comparison of stellar densities from
asteroseismology with densities derived from transit models in Batalha et al.
assuming circular orbits shows significant disagreement for more than half of
the sample due to systematics in the modeled impact parameters, or due to
planet candidates which may be in eccentric orbits. Finally, we investigate
tentative correlations between host-star masses and planet candidate radii,
orbital periods, and multiplicity, but caution that these results may be
influenced by the small sample size and detection biases.Comment: 19 pages, 10 figures, 4 tables; accepted for publication in ApJ;
machine-readable versions of tables 1-3 are available as ancillary files or
in the source code; v2: minor changes to match published versio
Stellar Spin-Orbit Misalignment in a Multiplanet System
Stars hosting hot Jupiters are often observed to have high obliquities,
whereas stars with multiple co-planar planets have been seen to have low
obliquities. This has been interpreted as evidence that hot-Jupiter formation
is linked to dynamical disruption, as opposed to planet migration through a
protoplanetary disk. We used asteroseismology to measure a large obliquity for
Kepler-56, a red giant star hosting two transiting co-planar planets. These
observations show that spin-orbit misalignments are not confined to hot-Jupiter
systems. Misalignments in a broader class of systems had been predicted as a
consequence of torques from wide-orbiting companions, and indeed
radial-velocity measurements revealed a third companion in a wide orbit in the
Kepler-56 system.Comment: Accepted for publication in Science, published online on October 17
2013; PDF includes main article and supplementary materials (65 pages, 27
figures, 7 tables); v2: small correction to author lis
Low-amplitude solar-like oscillations in the K5 V star Indi A
We have detected solar-like oscillations in the mid K-dwarf
Indi A, making it the coolest dwarf to have measured oscillations. The star is
noteworthy for harboring a pair of brown dwarf companions and a Jupiter-type
planet. We observed Indi A during two radial velocity campaigns,
using the high-resolution spectrographs HARPS (2011) and UVES (2021). Weighting
the time series, we computed the power spectra and established the detection of
solar-like oscillations with a power excess located at Hz
-- the highest frequency solar-like oscillations so far measured in any star.
The measurement of the center of the power excess allows us to compute a
stellar mass of based on scaling relations and a
known radius from interferometry. We also determine the amplitude of the peak
power and note that there is a slight difference between the two observing
campaigns, indicating a varying activity level. Overall, this work confirms
that low-amplitude solar-like oscillations can be detected in mid-K type stars
in radial velocity measurements obtained with high-precision spectrographs.Comment: 10 pages, 3 figures, accepted for publication in Ap
TESS Asteroseismology of Mensae: Benchmark Ages for a G7 Dwarf and its M-dwarf Companion
Asteroseismology of bright stars has become increasingly important as a
method to determine fundamental properties (in particular ages) of stars. The
Kepler Space Telescope initiated a revolution by detecting oscillations in more
than 500 main-sequence and subgiant stars. However, most Kepler stars are
faint, and therefore have limited constraints from independent methods such as
long-baseline interferometry. Here, we present the discovery of solar-like
oscillations in Men A, a naked-eye (V=5.1) G7 dwarf in TESS's Southern
Continuous Viewing Zone. Using a combination of astrometry, spectroscopy, and
asteroseismology, we precisely characterize the solar analog alpha Men A (Teff
= 5569 +/- 62 K, R = 0.960 +/- 0.016 Rsun, M = 0.964 +/- 0.045 Msun). To
characterize the fully convective M dwarf companion, we derive empirical
relations to estimate mass, radius, and temperature given the absolute Gaia
magnitude and metallicity, yielding M = 0.169 +/- 0.006, R = 0.19 +/- 0.01 and
Teff = 3054 +/- 44 K. Our asteroseismic age of 6.2 +/- 1.4 (stat) +/- 0.6 (sys)
Gyr for the primary places Men B within a small population of M dwarfs
with precisely measured ages. We combined multiple ground-based spectroscopy
surveys to reveal an activity cycle of 13.1 +/- 1.1 years, a period similar to
that observed in the Sun. We used different gyrochronology models with the
asteroseismic age to estimate a rotation period of ~30 days for the primary.
Alpha Men A is now the closest (d=10pc) solar analog with a precise
asteroseismic age from space-based photometry, making it a prime target for
next-generation direct imaging missions searching for true Earth analogs.Comment: Accepted to The Astrophysical Journal; 15 pages, 10 figure
A 1.9 Earth Radius Rocky Planet and the Discovery of a Non-Transiting Planet in the Kepler-20 System*
Kepler-20 is a solar-type star (V = 12.5) hosting a compact system of five transiting planets, all packed within the orbital distance of Mercury in our own Solar System. A transition from rocky to gaseous planets with a planetary transition radius of ∼ 1.6 R⊕ has recently been proposed by several publications in the literature (Rogers 2015; Weiss& Marcy 2014). Kepler-20b (Rp ∼ 1.9 R⊕) has a size beyond this transition radius, however previous mass measurements were not sufficiently precise to allow definite conclusions to be drawn regarding its composition. We present new mass measurements of Kepler-20 three of the planets in the Kepler-20 system facilitated by 104 radial velocity measurements from the HARPS-N spectrograph and 30 archival Keck/HIRES observations, as well as an updated photometric analysis of the Kepler data and an asteroseismic analysis of the host star (M* = 0.948 ± 0.051 M☉ and R* = 0.964 ± 0.018 R☉).Kepler-20b is a 1.868+0.066 −0.034 R⊕ planet in a 3.7 day period with amass of 9.70+1.41 −1.44 M⊕ resulting in a mean density of 8.2 +1.5 −1.3 g cm−3 indicating a rocky composition with an iron to silicate ratio consistent with that of the Earth. This makes Kepler-20b the most massive planet with a rocky composition found to date. Furthermore, we report the discovery of an additional non-transiting planet with a minimum mass of 19.96+3.08 −3.61 M⊕ and an orbital period of ∼ 34 days in the gap between Kepler-20f (P ∼ 11 days) and Kepler-20d (P ∼78 days).PostprintPeer reviewe