4,105 research outputs found

    The Distribution and Prevalence of the Alfalfa Blotch Leafminer (Diptera: Agromyzidae) in Illinois

    Get PDF
    Surveys were made in 2001 and 2002 to determine the distribution and prevalence of the alfalfa blotch leafminer, Agromyza frontella (Diptera: Agromyzidae), and its primary parasitoids, Dacnusa dryas and Chrysocharis liriomyzae (Hymenoptera: Braconidae and Eulophidae, respectively), in Illinois. We collected 239 samples from alfalfa fields in the alfalfa-producing regions of Illinois. Samples from each site consisted of 20 cut stems and 10 sets of 10 sweeps in 2001, and 40 stems and 10 sets of 20 sweeps in 2002. Each trifoliate was examined for mining and pinholing injury, and the number of adult A. frontella, D. dryas, and C. liriomyzae per 10 sweeps was calculated for each site. We found that 16.3% of the sites were infested with A. frontella, and all infested fields were north of 39.95 N latitude. Although up to 95% of stems were injured at some sites, mean injury per stem never exceeded 12% of trifoliates. Maximum adult abundance was 8.1 adults per 10 sweeps. We did not detect D. dryas or C. liriomyzae in any of the sweep samples. Because of consistently low populations and the relatively slow rate of A. frontella’s spread in Illinois, we conclude that A. frontella is not a serious threat to alfalfa production in this state at this time

    Distribution of an Exotic Pest, \u3ci\u3eAgromyza Frontella\u3c/i\u3e (Diptera: Agromyzidae), in Manitoba, Canada.

    Get PDF
    Agromyza frontella is an exotic alfalfa pest from Europe that was first detected in North America in 1968 and has since spread westward into Ontario and the north central United States. Informal surveys had detected A. frontella in Manitoba, but its distribution throughout this province was unknown. In 1998 we collected alfalfa stems to detect plant damage and sweep samples to detect adult A. frontella and the parasitoid Dacnusa dryas throughout the alfalfa growing region of Manitoba. In south central Manitoba, 100% of stems were damaged by A. frontella, and\u3e 100 adults/10 sweeps were recorded at several sites. In west central Manitoba, no plants were damaged and \u3c 10 adults/10 sweeps were observed. We believe this region to be near the western edge of A. frontella distribution. The most important introduced parasitoid of A. frontella, D. dryas, was not detected which suggests that D. dryas has not invaded Manitoba

    RFI Identification and Mitigation Using Simultaneous Dual Station Observations

    Full text link
    RFI mitigation is a critically important issue in radio astronomy using existing instruments as well as in the development of next-generation radio telescopes, such as the Square Kilometer Array (SKA). Most designs for the SKA involve multiple stations with spacings of up to a few thousands of kilometers and thus can exploit the drastically different RFI environments at different stations. As demonstrator observations and analysis for SKA-like instruments, and to develop RFI mitigation schemes that will be useful in the near term, we recently conducted simultaneous observations with Arecibo Observatory and the Green Bank Telescope (GBT). The observations were aimed at diagnosing RFI and using the mostly uncorrelated RFI between the two sites to excise RFI from several generic kinds of measurements such as giant pulses from Crab-like pulsars and weak HI emission from galaxies in bands heavily contaminated by RFI. This paper presents observations, analysis, and RFI identification and excision procedures that are effective for both time series and spectroscopy applications using multi-station data.Comment: 12 pages, 9 figures (4 in ps and 5 in jpg formats), Accepted for publication in Radio Scienc

    Core-Level Satellite Excitations of K/Al(100) and K/Al(111)

    Get PDF
    Alkali-metal-induced satellite peaks associated with the K 3p and Al 2p core levels have been measured with photoemission for K/Al(111) and K/Al(100) under both low- and room-temperature preparation conditions. For low-temperature deposition we observedddd loss peaks in good agreement with electron-energy-loss spectroscopy studies of analogous systems which we assign to the excitation of collective plasmonlike modes in the alkali-metal overlayer. For room-temperature preparation conditions, we observed significant changes in the satellite loss structure which we attribute to a decrease or loss of metallic behavior in the alkali-metal layer. We account for some of our results as a change in bonding configuration of the K atoms from on-top-of surface to substitutional adsorption for low versus room-temperature preparations

    The Distribution and Prevalence of the Alfalfa Blotch Leafminer (Diptera: Agromyzidae) in Illinois

    Get PDF
    Surveys were made in 2001 and 2002 to determine the distribution and prevalence of the alfalfa blotch leafminer, Agromyza frontella (Diptera: Agromyzidae), and its primary parasitoids, Dacnusa dryas and Chrysocharis liriomyzae (Hymenoptera: Braconidae and Eulophidae, respectively), in Illinois. We collected 239 samples from alfalfa fields in the alfalfa-producing regions of Illinois. Samples from each site consisted of 20 cut stems and 10 sets of 10 sweeps in 2001, and 40 stems and 10 sets of 20 sweeps in 2002. Each trifoliate was examined for mining and pinholing injury, and the number of adult A. frontella, D. dryas, and C. liriomyzae per 10 sweeps was calculated for each site. We found that 16.3% of the sites were infested with A. frontella, and all infested fields were north of 39.95 N latitude. Although up to 95% of stems were injured at some sites, mean injury per stem never exceeded 12% of trifoliates. Maximum adult abundance was 8.1 adults per 10 sweeps. We did not detect D. dryas or C. liriomyzae in any of the sweep samples. Because of consistently low populations and the relatively slow rate of A. frontella’s spread in Illinois, we conclude that A. frontella is not a serious threat to alfalfa production in this state at this time

    Energy spectra of finite temperature superfluid helium-4 turbulence

    Get PDF
    A mesoscopic model of finite temperature superfluid helium-4 based on coupled Langevin-Navier-Stokes dynamics is proposed. Drawing upon scaling arguments and available numerical results, a numerical method for designing well resolved, mesoscopic calculations of finite temperature superfluid turbulence is developed. The application of model and numerical method to the problem of fully developed turbulence decay in helium II, indicates that the spectral structure of normal-fluid and superfluid turbulence is significantly more complex than that of turbulence in simple-fluids. Analysis based on a forced flow of helium-4 at 1.3 K, where viscous dissipation in the normal-fluid is compensated by the Lundgren force, indicate three scaling regimes in the normal-fluid, that include the inertial, low wavenumber, Kolmogorov k?5/3 regime, a sub-turbulence, low Reynolds number, fluctuating k?2.2 regime, and an intermediate, viscous k?6 range that connects the two. The k?2.2 regime is due to normal-fluid forcing by superfluid vortices at high wavenumbers. There are also three scaling regimes in the superfluid, that include a k?3 range that corresponds to the growth of superfluid vortex instabilities due to mutual-friction action, and an adjacent, low wavenumber, k?5/3 regime that emerges during the termination of this growth, as superfluid vortices agglomerate between intense normal-fluid vorticity regions, and weakly polarized bundles are formed. There is also evidence of a high wavenumber k?1 range that corresponds to the probing of individual-vortex velocity fields. The Kelvin waves cascade (the main dynamical effect in zero temperature superfluids) appears to be damped at the intervortex space scale

    Brown-York Energy and Radial Geodesics

    Full text link
    We compare the Brown-York (BY) and the standard Misner-Sharp (MS) quasilocal energies for round spheres in spherically symmetric space-times from the point of view of radial geodesics. In particular, we show that the relation between the BY and MS energies is precisely analogous to that between the (relativistic) energy E of a geodesic and the effective (Newtonian) energy E_{eff} appearing in the geodesic equation, thus shedding some light on the relation between the two. Moreover, for Schwarzschild-like metrics we establish a general relationship between the BY energy and the geodesic effective potential which explains and generalises the recently observed connection between negative BY energy and the repulsive behaviour of geodesics in the Reissner-Nordstrom metric. We also comment on the extension of this connection between geodesics and the quasilocal BY energy to regions inside a horizon.Comment: v3: 7 pages, shortened and revised version to appear in CQ

    Venus Interior Structure Mission (VISM): Establishing a Seismic Network on Venus

    Get PDF
    Magellan radar data show the surface of Venus to contain a wide range of geologic features (large volcanoes, extensive rift valleys, etc.). Although networks of interconnecting zones of deformation are identified, a system of spreading ridges and subduction zones like those that dominate the tectonic style of the Earth do not appear to be present. In addition, the absence of a mantle low-viscosity zone suggests a strong link between mantle dynamics and the surface. As a natural follow-on to the Magellan mission, establishing a network of seismometers on Venus will provide detailed quantitative information on the large scale interior structure of the planet. When analyzed in conjunction with image, gravity, and topography information, these data will aid in constraining mechanisms that drive surface deformation
    corecore