15 research outputs found

    Lack of a Clinically Important Effect of Moderate Hepatic Insufficiency and Severe Renal Insufficiency on Raltegravir Pharmacokinetics▿ †

    No full text
    Raltegravir is a human immunodeficiency virus type 1 integrase strand transfer inhibitor with potent activity in vitro and in vivo. Raltegravir is primarily cleared by hepatic metabolism via glucuronidation (via UDP glucuronosyltransferase 1A1), with a minor component of elimination occurring via the renal pathway. Since the potential exists for raltegravir to be administered to patients with hepatic or renal insufficiency, two studies were conducted to evaluate the influence of moderate hepatic insufficiency (assessed by using the Child-Pugh criteria) and severe renal insufficiency (creatinine clearance, <30 ml/min/1.73 m2) on the pharmacokinetics of raltegravir. Study I evaluated the pharmacokinetics of 400 mg raltegravir in eight patients with moderate hepatic insufficiency and eight healthy, matched control subjects. Study II evaluated the pharmacokinetics of 400 mg raltegravir in 10 patients with severe renal insufficiency and 10 healthy, matched control subjects. All participants received a single 400-mg dose of raltegravir in the fasted state. In study I, the geometric mean ratios (GMR; mean value for the group with moderate hepatic insufficiency/mean value for the healthy controls) and 90% confidence intervals (CIs) for the area under the concentration-time curve from time zero to infinity (AUC0-∞), the maximum concentration of drug in plasma (Cmax), and the concentration at 12 h (C12) were 0.86 (90% CI, 0.41, 1.77), 0.63 (90% CI, 0.23, 1.70), and 1.26 (90% CI, 0.65, 2.43), respectively. In study II, the GMRs (mean value for the group with renal insufficiency/mean value for the healthy controls) and 90% CIs for AUC0-∞, Cmax, and C12 were 0.85 (90% CI, 0.49, 1.49), 0.68 (90% CI, 0.35, 1.32), and 1.28 (90% CI, 0.79, 2.06), respectively. Raltegravir was generally well tolerated by patients with moderate hepatic or severe renal insufficiency, and there was no clinically important effect of moderate hepatic or severe renal insufficiency on the pharmacokinetics of raltegravir. No adjustment in the dose of raltegravir is required for patients with mild or moderate hepatic or renal insufficiency

    Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins

    No full text
    RNA-binding proteins (RBPs) determine RNA fate from synthesis to decay. Employing two complementary protocols for covalent UV crosslinking of RBPs to RNA, we describe a systematic, unbiased, and comprehensive approach, termed “interactome capture,” to define the mRNA interactome of proliferating human HeLa cells. We identify 860 proteins that qualify as RBPs by biochemical and statistical criteria, adding more than 300 RBPs to those previously known and shedding light on RBPs in disease, RNA-binding enzymes of intermediary metabolism, RNA-binding kinases, and RNA-binding architectures. Unexpectedly, we find that many proteins of the HeLa mRNA interactome are highly intrinsically disordered and enriched in short repetitive amino acid motifs. Interactome capture is broadly applicable to study mRNA interactome composition and dynamics in varied biological settings

    Spontaneous premature birth as a target of genomic research

    No full text
    Abstract Spontaneous preterm birth is a serious and common pregnancy complication associated with hormonal dysregulation, infection, inflammation, immunity, rupture of fetal membranes, stress, bleeding, and uterine distention. Heredity is 25–40% and mostly involves the maternal genome, with contribution of the fetal genome. Significant discoveries of candidate genes by genome-wide studies and confirmation in independent replicate populations serve as signposts for further research. The main task is to define the candidate genes, their roles, localization, regulation, and the associated pathways that influence the onset of human labor. Genomic research has identified some candidate genes that involve growth, differentiation, endocrine function, immunity, and other defense functions. For example, selenocysteine-specific elongation factor (EEFSEC) influences synthesis of selenoproteins. WNT4 regulates decidualization, while a heat-shock protein family A (HSP70) member 1 like, HSPAIL, influences expression of glucocorticoid receptor and WNT4. Programming of pregnancy duration starts before pregnancy and during placentation. Future goals are to understand the interactive regulation of the pathways in order to define the clocks that influence the risk of prematurity and the duration of pregnancy. Premature birth has a great impact on the duration and the quality of life. Intensification of focused research on causes, prediction and prevention of prematurity is justified

    Genes Related to Metabolic Abnormalities or Insulin Resistance in Polycystic Ovary Syndrome

    No full text
    corecore