7,741 research outputs found
The comparative anatomy of the toothless blindcat, Trogloglanis pattersoni Eigenmann, with a phylogenetic analysis of the ictalurid catfishes
http://deepblue.lib.umich.edu/bitstream/2027.42/56407/1/MP163.pd
SBASI: Actuated pyrotechnic time delay initiator
A precision pyrotechnic time delay initiator for missile staging was developed and tested. Incorporated in the assembly is a single bridgewire Apollo standard initiator (SBASI) for initiation, a through-bulkhead-initiator to provide isolation of the SBASI output from the delay, the pyrotechnic delay, and an output charge. An attempt was made to control both primary and secondary variables affecting functional performance of the delay initiator. Design and functional limit exploration was performed to establish tolerance levels on manufacturing and assembling operations. The test results demonstrate a 2% coefficient of variation at any one temperature and an overall 2.7% coefficient of variation throughout the temperature range of 30 to 120 F. Tests were conducted at simulated operational altitude from sea level to 200,000 feet
Phenex: Ontological Annotation of Phenotypic Diversity
Phenex is a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic variation using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Despite the centrality of the phenotype to so much of biology, traditions for communicating information about phenotypes are idiosyncratic to different disciplines. Phenotypes seem to elude standardized descriptions due to the variety of traits that compose them and the difficulty of capturing the complex forms and subtle differences among organisms that we can readily observe. Consequently, phenotypes are refractory to attempts at data integration that would allow computational analyses across studies and study systems. Phenex addresses this problem by allowing scientists to employ standard ontologies and syntax to link computable phenotype annotations to evolutionary character matrices, as well as to link taxa and specimens to ontological identifiers. Ontologies have become a foundational technology for establishing shared semantics, and, more generally, for capturing and computing with biological knowledge
Wave function mapping conditions in Open Quantum Dots structures
We discuss the minimal conditions for wave function spectroscopy, in which
resonant tunneling is the measurement tool. Two systems are addressed: resonant
tunneling diodes, as a toy model, and open quantum dots. The toy model is used
to analyze the crucial tunning between the necessary resolution in
current-voltage characteristics and the breakdown of the wave functions probing
potentials into a level splitting characteristic of double quantum wells. The
present results establish a parameter region where the wavefunction
spectroscopy by resonant tunneling could be achieved. In the case of open
quantum dots, a breakdown of the mapping condition is related to a change into
a double quantum dot structure induced by the local probing potential. The
analogy between the toy model and open quantum dots show that a precise control
over shape and extention of the potential probes is irrelevant for wave
function mapping. Moreover, the present system is a realization of a tunable
Fano system in the wave function mapping regime.Comment: 6 pages, 6 figure
Fractional Loop Group and Twisted K-Theory
We study the structure of abelian extensions of the group of
-differentiable loops (in the Sobolev sense), generalizing from the case of
central extension of the smooth loop group. This is motivated by the aim of
understanding the problems with current algebras in higher dimensions. Highest
weight modules are constructed for the Lie algebra. The construction is
extended to the current algebra of supersymmetric Wess-Zumino-Witten model. An
application to the twisted K-theory on is discussed.Comment: Final version in Commun. Math. Phy
- …