16,094 research outputs found

    Scattering of second sound waves by quantum vorticity

    Full text link
    A new method of detection and measurement of quantum vorticity by scattering second sound off quantized vortices in superfluid Helium is suggested. Theoretical calculations of the relative amplitude of the scattered second sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are presented. The relevant estimates show that an experimental verification of the method is feasible. Moreover, it can even be used for the detection of a single quantum vortex.Comment: Latex file, 9 page

    Fault-tolerant linear optical quantum computing with small-amplitude coherent states

    Get PDF
    Quantum computing using two optical coherent states as qubit basis states has been suggested as an interesting alternative to single photon optical quantum computing with lower physical resource overheads. These proposals have been questioned as a practical way of performing quantum computing in the short term due to the requirement of generating fragile diagonal states with large coherent amplitudes. Here we show that by using a fault-tolerant error correction scheme, one need only use relatively small coherent state amplitudes (α>1.2\alpha > 1.2) to achieve universal quantum computing. We study the effects of small coherent state amplitude and photon loss on fault tolerance within the error correction scheme using a Monte Carlo simulation and show the quantity of resources used for the first level of encoding is orders of magnitude lower than the best known single photon scheme. %We study this reigem using a Monte Carlo simulation and incorporate %the effects of photon loss in this simulation

    Star-Like Micelles with Star-Like Interactions: A quantitative Evaluation of Structure Factor and Phase Diagram

    Get PDF
    PEP-PEO block copolymer micelles offer the possibility to investigate phase behaviour and interactions of star polymers (ultra-soft colloids). A star-like architecture is achieved by an extremely asymmetric block ratio (1:20). Micellar functionality f can be smoothly varied by changing solvent composition (interfacial tension). Structure factors obtained by SANS can be quantitatively described in terms of an effective potential developed for star polymers. The experimental phase diagram reproduces to a high level of accuracy the predicted liquid/solid transition. Whereas for intermediate f a bcc phase is observed, for high f the formation of a fcc phase is preempted by glass formation.Comment: 5 pages, 4 figures, PRL in pres

    Topological Landau-Ginzburg Theory for Vortices in Superfluid 4^4He

    Full text link
    We propose a new Landau-Ginzburg theory for arbitrarily shaped vortex strings in superfluid 4^4He. The theory contains a topological term and directly describes vortex dynamics. We introduce gauge fields in order to remove singularities from the Landau-Ginzburg order parameter of the superfluid, so that two kinds of gauge symmetries appear, making the continuity equation and conservation of the total vorticity manifest. The topological term gives rise to the Berry phase term in the vortex mechanical actions.Comment: LATEX, 9 page

    Effective slip boundary conditions for flows over nanoscale chemical heterogeneities

    Full text link
    We study slip boundary conditions for simple fluids at surfaces with nanoscale chemical heterogeneities. Using a perturbative approach, we examine the flow of a Newtonian fluid far from a surface described by a heterogeneous Navier slip boundary condition. In the far-field, we obtain expressions for an effective slip boundary condition in certain limiting cases. These expressions are compared to numerical solutions which show they work well when applied in the appropriate limits. The implications for experimental measurements and for the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure

    Measuring measurement--disturbance relationships with weak values

    Full text link
    Using formal definitions for measurement precision {\epsilon} and disturbance (measurement backaction) {\eta}, Ozawa [Phys. Rev. A 67, 042105 (2003)] has shown that Heisenberg's claimed relation between these quantities is false in general. Here we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation --- both quantities correspond to the root-mean-squared difference given by a weak-valued probability distribution. We propose a simple three-qubit experiment which would illustrate the failure of Heisenberg's measurement--disturbance relation, and the validity of an alternative relation proposed by Ozawa

    Scattering of first and second sound waves by quantum vorticity in superfluid Helium

    Full text link
    We study the scattering of first and second sound waves by quantum vorticity in superfluid Helium using two-fluid hydrodynamics. The vorticity of the superfluid component and the sound interact because of the nonlinear character of these equations. Explicit expressions for the scattered pressure and temperature are worked out in a first Born approximation, and care is exercised in delimiting the range of validity of the assumptions needed for this approximation to hold. An incident second sound wave will partly convert into first sound, and an incident first sound wave will partly convert into second sound. General considerations show that most incident first sound converts into second sound, but not the other way around. These considerations are validated using a vortex dipole as an explicitely worked out example.Comment: 24 pages, Latex, to appear in Journal of Low Temperature Physic

    Experimental determination of the degree of quantum polarisation of continuous variable states

    Get PDF
    We demonstrate excitation-manifold resolved polarisation characterisation of continuous-variable (CV) quantum states. In contrast to traditional characterisation of polarisation that is based on the Stokes parameters, we experimentally determine the Stokes vector of each excitation manifold separately. Only for states with a given photon number does the methods coincide. For states with an indeterminate photon number, for example Gaussian states, the employed method gives a richer and more accurate description. We apply the method both in theory and in experiment to some common states to demonstrate its advantages.Comment: 5 page
    • …
    corecore