8,713 research outputs found

    Measurement of the branching ratio for beta-delayed alpha decay of 16N

    Get PDF
    While the 12C(a,g)16O reaction plays a central role in nuclear astrophysics, the cross section at energies relevant to hydrostatic helium burning is too small to be directly measured in the laboratory. The beta-delayed alpha spectrum of 16N can be used to constrain the extrapolation of the E1 component of the S-factor; however, with this approach the resulting S-factor becomes strongly correlated with the assumed beta-alpha branching ratio. We have remeasured the beta-alpha branching ratio by implanting 16N ions in a segmented Si detector and counting the number of beta-alpha decays relative to the number of implantations. Our result, 1.49(5)e-5, represents a 24% increase compared to the accepted value and implies an increase of 14% in the extrapolated S-factor

    Systematic trends in beta-delayed particle emitting nuclei: The case of beta-p-alpha emission from 21Mg

    Get PDF
    We have observed beta+-delayed alpha and p-alpha emission from the proton-rich nucleus 21Mg produced at the ISOLDE facility at CERN. The assignments were cross-checked with a time distribution analysis. This is the third identified case of beta-p-alpha emission. We discuss the systematic of beta-delayed particle emission decays, show that our observed decays fit naturally into the existing pattern, and argue that the patterns are to a large extent caused by odd-even effects.Comment: 6 pages, 5 figure

    Efficient computation of matched solutions of the Kapchinskij-Vladimirskij envelope equations for periodic focusing lattices

    Full text link
    A new iterative method is developed to numerically calculate the periodic, matched beam envelope solution of the coupled Kapchinskij-Vladimirskij (KV) equations describing the transverse evolution of a beam in a periodic, linear focusing lattice of arbitrary complexity. Implementation of the method is straightforward. It is highly convergent and can be applied to all usual parameterizations of the matched envelope solutions. The method is applicable to all classes of linear focusing lattices without skew couplings, and also applies to all physically achievable system parameters -- including where the matched beam envelope is strongly unstable. Example applications are presented for periodic solenoidal and quadrupole focusing lattices. Convergence properties are summarized over a wide range of system parameters.Comment: 20 pages, 5 figures, Mathematica source code provide

    An Improved Interactive Streaming Algorithm for the Distinct Elements Problem

    Full text link
    The exact computation of the number of distinct elements (frequency moment F0F_0) is a fundamental problem in the study of data streaming algorithms. We denote the length of the stream by nn where each symbol is drawn from a universe of size mm. While it is well known that the moments F0,F1,F2F_0,F_1,F_2 can be approximated by efficient streaming algorithms, it is easy to see that exact computation of F0,F2F_0,F_2 requires space Ω(m)\Omega(m). In previous work, Cormode et al. therefore considered a model where the data stream is also processed by a powerful helper, who provides an interactive proof of the result. They gave such protocols with a polylogarithmic number of rounds of communication between helper and verifier for all functions in NC. This number of rounds (O(log2m)  in the case of  F0)\left(O(\log^2 m) \;\text{in the case of} \;F_0 \right) can quickly make such protocols impractical. Cormode et al. also gave a protocol with logm+1\log m +1 rounds for the exact computation of F0F_0 where the space complexity is O(logmlogn+log2m)O\left(\log m \log n+\log^2 m\right) but the total communication O(nlogm(logn+logm))O\left(\sqrt{n}\log m\left(\log n+ \log m \right)\right). They managed to give logm\log m round protocols with polylog(m,n)\operatorname{polylog}(m,n) complexity for many other interesting problems including F2F_2, Inner product, and Range-sum, but computing F0F_0 exactly with polylogarithmic space and communication and O(logm)O(\log m) rounds remained open. In this work, we give a streaming interactive protocol with logm\log m rounds for exact computation of F0F_0 using O(logm(logn+logmloglogm))O\left(\log m \left(\,\log n + \log m \log\log m\,\right)\right) bits of space and the communication is O(logm(logn+log3m(loglogm)2))O\left( \log m \left(\,\log n +\log^3 m (\log\log m)^2 \,\right)\right). The update time of the verifier per symbol received is O(log2m)O(\log^2 m).Comment: Submitted to ICALP 201

    Individualised risk assessment for diabetic retinopathy and optimisation of screening intervals: a scientific approach to reducing healthcare costs.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.To validate a mathematical algorithm that calculates risk of diabetic retinopathy progression in a diabetic population with UK staging (R0-3; M1) of diabetic retinopathy. To establish the utility of the algorithm to reduce screening frequency in this cohort, while maintaining safety standards.The cohort of 9690 diabetic individuals in England, followed for 2 years. The algorithms calculated individual risk for development of preproliferative retinopathy (R2), active proliferative retinopathy (R3A) and diabetic maculopathy (M1) based on clinical data. Screening intervals were determined such that the increase in risk of developing certain stages of retinopathy between screenings was the same for all patients and identical to mean risk in fixed annual screening. Receiver operating characteristic curves were drawn and area under the curve calculated to estimate the prediction capability.The algorithm predicts the occurrence of the given diabetic retinopathy stages with area under the curve =80% for patients with type II diabetes (CI 0.78 to 0.81). Of the cohort 64% is at less than 5% risk of progression to R2, R3A or M1 within 2 years. By applying a 2 year ceiling to the screening interval, patients with type II diabetes are screened on average every 20 months, which is a 40% reduction in frequency compared with annual screening.The algorithm reliably identifies patients at high risk of developing advanced stages of diabetic retinopathy, including preproliferative R2, active proliferative R3A and maculopathy M1. Majority of patients have less than 5% risk of progression between stages within a year and a small high-risk group is identified. Screening visit frequency and presumably costs in a diabetic retinopathy screening system can be reduced by 40% by using a 2 year ceiling. Individualised risk assessment with 2 year ceiling on screening intervals may be a pragmatic next step in diabetic retinopathy screening in UK, in that safety is maximised and cost reduced by about 40%.Icelandic Research Counci

    Vertex Operators and Soliton Solutions of Affine Toda Model with U(2) Symmetry

    Full text link
    The symmetry structure of non-abelian affine Toda model based on the coset SL(3)/SL(2)U(1)SL(3)/SL(2)\otimes U(1) is studied. It is shown that the model possess non-abelian Noether symmetry closing into a q-deformed SL(2)U(1)SL(2)\otimes U(1) algebra. Specific two vertex soliton solutions are constructed.Comment: 17 pages, latex, misprints corrected, version to appear in J.Phys

    Rational sequences for the conductance in quantum wires from affine Toda field theories

    Get PDF
    We analyse the expression for the conductance of a quantum wire which is decribed by an integrable quantum field theory. In the high temperature regime we derive a simple formula for the filling fraction. This expression involves only the inverse of a matrix which contains the information of the asymptotic phases of the scattering matrix and the solutions of the constant thermodynamic Bethe ansatz equations. Evaluating these expressions for minimal affine Toda field theory we recover several sequences of rational numbers, which are multiples of the famous Jain sequence for the filling fraction occurring in the context of the fractional quantum Hall effect. For instance we obtain ν=4m/(2m+1)\nu= 4 m/(2m +1) for A4m1A_{4m-1}-minimal affine Toda field theory. The matrices involved have in general non-rational entries and are not part of previous classification schemes based on integral lattices.Comment: 9 pages Latex, version to appear in Journal of Physics

    Wearing Quality of Reused Wool

    Get PDF
    This cooperative study between the South Dakota and Minnesota stations, was undertaken to determine the effect of combining various amounts of reused wool with new wool upon the serviceability of wool flannels made of these two types of fiber. Since the wear life of a garment necessarily must include cleaning and aging as well as wear the study was designed to measure the physical changes in these flannels which resulted from those three factors
    corecore