157 research outputs found

    Language beyond the language system:Dorsal visuospatial pathways support processing of demonstratives and spatial language during naturalistic fast fMRI

    Get PDF
    Spatial demonstratives are powerful linguistic tools used to establish joint attention. Identifying the meaning of semantically underspecified expressions like “this one” hinges on the integration of linguistic and visual cues, attentional orienting and pragmatic inference. This synergy between language and extralinguistic cognition is pivotal to language comprehension in general, but especially prominent in demonstratives. In this study, we aimed to elucidate which neural architectures enable this intertwining between language and extralinguistic cognition using a naturalistic fMRI paradigm. In our experiment, 28 participants listened to a specially crafted dialogical narrative with a controlled number of spatial demonstratives. A fast multiband-EPI acquisition sequence (TR = 388 m s) combined with finite impulse response (FIR) modelling of the hemodynamic response was used to capture signal changes at word-level resolution. We found that spatial demonstratives bilaterally engage a network of parietal areas, including the supramarginal gyrus, the angular gyrus, and precuneus, implicated in information integration and visuospatial processing. Moreover, demonstratives recruit frontal regions, including the right FEF, implicated in attentional orienting and reference frames shifts. Finally, using multivariate similarity analyses, we provide evidence for a general involvement of the dorsal (“where”) stream in the processing of spatial expressions, as opposed to ventral pathways encoding object semantics. Overall, our results suggest that language processing relies on a distributed architecture, recruiting neural resources for perception, attention, and extra-linguistic aspects of cognition in a dynamic and context-dependent fashion

    Fundamental Properties of Kepler Planet-Candidate Host Stars using Asteroseismology

    Get PDF
    We have used asteroseismology to determine fundamental properties for 66 Kepler planet-candidate host stars, with typical uncertainties of 3% and 7% in radius and mass, respectively. The results include new asteroseismic solutions for four host stars with confirmed planets (Kepler-4, Kepler-14, Kepler-23 and Kepler-25) and increase the total number of Kepler host stars with asteroseismic solutions to 77. A comparison with stellar properties in the planet-candidate catalog by Batalha et al. shows that radii for subgiants and giants obtained from spectroscopic follow-up are systematically too low by up to a factor of 1.5, while the properties for unevolved stars are in good agreement. We furthermore apply asteroseismology to confirm that a large majority of cool main-sequence hosts are indeed dwarfs and not misclassified giants. Using the revised stellar properties, we recalculate the radii for 107 planet candidates in our sample, and comment on candidates for which the radii change from a previously giant-planet/brown-dwarf/stellar regime to a sub-Jupiter size, or vice versa. A comparison of stellar densities from asteroseismology with densities derived from transit models in Batalha et al. assuming circular orbits shows significant disagreement for more than half of the sample due to systematics in the modeled impact parameters, or due to planet candidates which may be in eccentric orbits. Finally, we investigate tentative correlations between host-star masses and planet candidate radii, orbital periods, and multiplicity, but caution that these results may be influenced by the small sample size and detection biases.Comment: 19 pages, 10 figures, 4 tables; accepted for publication in ApJ; machine-readable versions of tables 1-3 are available as ancillary files or in the source code; v2: minor changes to match published versio

    SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism

    Get PDF
    It is well established that lncRNAs are aberrantly expressed in cancer where they have been shown to act as oncogenes or tumor suppressors. RNA profiling of 314 colorectal adenomas/adenocarcinomas and 292 adjacent normal colon mucosa samples using RNA‐sequencing demonstrated that the snoRNA host gene 16 (SNHG16) is significantly up‐regulated in adenomas and all stages of CRC. SNHG16 expression was positively correlated to the expression of Wnt‐regulated transcription factors, including ASCL2, ETS2, and c‐Myc. In vitro abrogation of Wnt signaling in CRC cells reduced the expression of SNHG16 indicating that SNHG16 is regulated by the Wnt pathway. Silencing of SNHG16 resulted in reduced viability, increased apoptotic cell death and impaired cell migration. The SNHG16 silencing particularly affected expression of genes involved in lipid metabolism. A connection between SNHG16 and genes involved in lipid metabolism was also observed in clinical tumors. Argonaute CrossLinking and ImmunoPrecipitation (AGO‐CLIP) demonstrated that SNHG16 heavily binds AGO and has 27 AGO/miRNA target sites along its length, indicating that SNHG16 may act as a competing endogenous RNA (ceRNA) “sponging” miRNAs off their cognate targets. Most interestingly, half of the miRNA families with high confidence targets on SNHG16 also target the 3′UTR of Stearoyl‐CoA Desaturase (SCD). SCD is involved in lipid metabolism and is down‐regulated upon SNHG16 silencing. In conclusion, up‐regulation of SNHG16 is a frequent event in CRC, likely caused by deregulated Wnt signaling. In vitro analyses demonstrate that SNHG16 may play an oncogenic role in CRC and that it affects genes involved in lipid metabolism, possible through ceRNA related mechanisms

    Genomic Profiling of a Randomized Trial of Interferon-α versus Hydroxyurea in MPN Reveals Mutation-Specific Responses

    Get PDF
    Although somatic mutations influence the pathogenesis, phenotype, and outcome of myeloproliferative neoplasms (MPNs), little is known about their impact on molecular response to cytoreductive treatment. We performed targeted next-generation sequencing (NGS) on 202 pretreatment samples obtained from patients with MPN enrolled in the DALIAH trial (A Study of Low Dose Interferon Alpha Versus Hydroxyurea in Treatment of Chronic Myeloid Neoplasms; #NCT01387763), a randomized controlled phase 3 clinical trial, and 135 samples obtained after 24 months of therapy with recombinant interferon-alpha (IFNα) or hydroxyurea. The primary aim was to evaluate the association between complete clinicohematologic response (CHR) at 24 months and molecular response through sequential assessment of 120 genes using NGS. Among JAK2-mutated patients treated with IFNα, those with CHR had a greater reduction in the JAK2 variant allele frequency (median, 0.29 to 0.07; P < .0001) compared with those not achieving CHR (median, 0.27 to 0.14; P < .0001). In contrast, the CALR variant allele frequency did not significantly decline in those achieving CHR or in those not achieving CHR. Treatment-emergent mutations in DNMT3A were observed more commonly in patients treated with IFNα compared with hydroxyurea (P = .04). Furthermore, treatment-emergent DNMT3A mutations were significantly enriched in IFNα–treated patients not attaining CHR (P = .02). A mutation in TET2, DNMT3A, or ASXL1 was significantly associated with prior stroke (age-adjusted odds ratio, 5.29; 95% confidence interval, 1.59-17.54; P = .007), as was a mutation in TET2 alone (age-adjusted odds ratio, 3.03; 95% confidence interval, 1.03-9.01; P = .044). At 24 months, we found mutation-specific response patterns to IFNα: (1) JAK2- and CALR-mutated MPN exhibited distinct molecular responses; and (2) DNMT3A-mutated clones/subclones emerged on treatment
    corecore