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a b s t r a c t 

Introduction: Functional MRI with spatial resolution in the submillimeter domain enables measurements of activa- 

tion across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward 

versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclu- 

sively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such 

systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined 

if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. 

Methods: 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session 

reliability, each subject was scanned in 3–8 sessions on 3–4 consecutive days. A 3D gradient echo EPI (GE-EPI) 

sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger 

tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations 

in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for 

large vein contamination through phase regression. 

Results and conclusion: NORDIC denoising resulted in tSNR values comparable to or higher than commonly 

observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, 

from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to 

substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution 

remained. We believe the present results support an improved feasibility of laminar fMRI at 3T. 
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. Introduction 

Functional MRI (fMRI) with spatial resolutions at the submillime-

er scale is a rapidly growing field, motivated, in part, by the ability

o resolve cortical layers noninvasively in human subjects. Activation

atterns across distinct laminae constitute a fingerprint of feedforward

nd feedback related information ( Felleman and Van Essen, 1991 ), mak-

ng the method, which we will refer to as laminar fMRI, a valuable

sset for studying hierarchical information flow in the brain. Numer-

us studies already demonstrated its worth in areas related to, e.g.,

isual perception and attention ( Aitken et al., 2020 ; Kok et al., 2016 ;

iu et al., 2020 ; Muckli et al., 2015 ), motor control ( Huber et al., 2017 ;

ersichetti et al., 2020 ), somatosensation ( Yu et al., 2019 , 2022 ), au-

itory perception ( De Martino et al., 2015 ; Moerel et al., 2019 ), and

anguage ( Sharoh et al., 2019 ). Laminar fMRI further holds promise
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s a tool to expand our understanding of the diseased brain, as pro-

osed specifically for neurodegenerative diseases, in a recent review

 McColgan et al., 2020 ). 

Resolving functional responses of such delicate structures is no

asy task and comes with several challenges ( Bandettini et al., 2021 ;

olimeni et al., 2018 ), a major one being reduced image SNR due to

mall voxel sizes, resulting in reduced tSNR. This ultimately leads to

 limited ability to detect functional responses (reduced sensitivity),

hich gets magnified by the fact that regular spatial smoothing is pro-

ibited as it would wash out layer-specific information. Another con-

ern is the well-established signal dispersion caused by blood-signal

ropagating towards and along the cortical surface, which displaces

he signal from its local neuronal activity ( Menon, 2012 ; Turner, 2002 ;

luda ǧ et al., 2009 ). Macrovascular ascending veins and pial

eins constitute the cortical infrastructure underlying this dispersion
rd 99, Aarhus N 8200, Denmark. 
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 Duvernoy et al., 1981 ), and the problem applies in particular to BOLD

MRI using GE-EPI readouts (GE-BOLD) due to its T2 ∗ based con-

rast ( Yacoub et al., 2003 ). Sequences relying on T2 based contrast

uch as spin echo EPI (SE-EPI) ( Han et al., 2021 ; Koopmans and Ya-

oub, 2019 ) and b-SSFP ( Báez-Yánez et al., 2017 ; Liu et al., 2020 ), cere-

ral blood volume (CBV) based contrast such as VASO ( Huber et al.,

015 ; Lu et al., 2003 ) or cerebral blood flow (CBF) based contrast such

s ASL ( Kashyap et al., 2021 ; Shao et al., 2021 ) are less sensitive to

acrovasculature. Activation maps of these sequences thus have higher

icrovascular weighting resulting in improved co-localization with un-

erlying neuronal activity. However, SE-EPI for instance is rarely free of

2 ∗ effects due to long readout times ( Goense and Logothetis, 2006 ) and

rade-offs with these alternatives to GE-BOLD generally include lower

ontrast-to-noise ratio (CNR), lower sampling efficiency and potentially

ess straightforward implementation. The “best ” sequence thus does not

xist and which one to choose depends on the specific research goal. GE-

OLD has nevertheless been the most frequently adopted sequence for

aminar fMRI hitherto and will be the sequence of focus in the present

tudy. 

The vast majority of laminar fMRI studies employed ultrahigh field

 ≥ 7T) scanners. This is motivated by an increased SNR which al-

ows for the high spatial resolution necessary for laminar fMRI stud-

es ( Triantafyllou et al., 2005 ) in addition to an enhanced BOLD ef-

ect ( Ugurbil, 2014 ). Moreover, signal contributions from intravascular

ompartments are reduced as a result of the very short T2 ∗ -value of

lood at ultrahigh field ( Jochimsen et al., 2004 ; Uluda ǧ et al., 2009 ).

he aforementioned sensitivity and macrovascular challenges are hence

oth alleviated with ultrahigh field systems ( Chaimow et al., 2018 ;

umoulin et al., 2018 ; U ğurbil, 2021 ). The downside of a dependence

n ultrahigh field is a dramatic decrease in the availability of laminar

MRI, as these systems are still relatively rare, and clinically approved

nes, even more so. Successful GE-BOLD 3T implementations of lam-

nar fMRI have been reported ( Kim and Ress, 2017 ; Koopmans et al.,

010 ; Markuerkiaga, Marques, Bains, et al., 2021 ; Puckett et al., 2016 ;

ess et al., 2007 ; Scheeringa et al., 2016 , 2022 ; Taso et al., 2021 ;

u et al., 2018 ), demonstrating that useful layer-dependent activation

easures can be obtained outside of ultrahigh field applications. How-

ver, sequence and analysis strategies previously adopted to overcome

he challenges at lower field strength, such as specialized head coils or

arge ROIs, may be incompatible in many settings, and widespread use of

aminar fMRI at 3T has yet to emerge. To this end, a recently published

enoising method, named NORDIC ( Moeller et al., 2021 ; Vizioli et al.,

021 ), has proven effective at increasing the signal stability of magni-

ude and phase time series data. It is based on principal component

nalysis (PCA) applied to the full complex valued MRI dataset data

ith the aim of removing principal components that cannot be distin-

uished from zero-mean gaussian noise. Thermal noise fits this descrip-

ion and is the dominant source of noise for submillimeter voxels at 3T

 Triantafyllou et al., 2005 ). Initial reports on the effect of NORDIC indi-

ate substantial tSNR increments without any significant spatial blurring

eing introduced ( Dowdle et al., 2021 ; Vizioli et al., 2021 ). It may thus

elp alleviate the challenge of reduced tSNR at lower field strengths and

ncrease the utility of 3T laminar fMRI. 

Accordingly, the main purpose of this study was to examine if the

easibility of 3T laminar fMRI with GE-BOLD could be improved us-

ng NORDIC denoising. Furthermore, we examined if increased mi-

rovascular weighting could be achieved through phase regression

 Menon, 2002 ), which aims to suppress signal from large veins. Several

lternative vein correction approaches have been proposed (discussed in

uang et al., 2021 ; Huber et al., 2021c ; Kay et al., 2019 ; Koopmans and

acoub, 2019 ; Stanley et al., 2020 ). We decided to test this particular

ethod for three main reasons: (1) it has proved effective for selectively

uppressing the response in voxels contaminated by large veins (pial

eins and largest ascending veins) while maintaining high sensitivity

 Stanley et al., 2020 ); (2) It is applicable for a large range of laminar

MRI applications as it does not rely on any additional scans or equip-
2 
ent, and it does not, in principle, rely on paradigm design (although

t has some CNR dependency); (3) its efficiency may elevate with the

ombination of NORDIC as a result of denoised phase time series. We

canned subjects during a finger tapping task and extracted layer pro-

les from regions of interest (ROIs) in the hand knob of the primary

otor cortex (M1) which enabled comparison with results from the 7T

aminar fMRI literature. Finally, we examined the reliability of this 3T

etup both within and across sessions by scanning each subject on mul-

iple days. The results could potentially help to increase the utility of

aminar fMRI at 3T, which would be valuable for making laminar fMRI

vailable to a much wider community. 

. Methods 

.1. Subjects 

5 healthy right-handed subjects (1 female) with an age of 25–29

ears were included in the study, approved by the regional ethics com-

ittee in Region Midt (Study ID 1-10-72-216-21). All subjects were care-

ully informed about the procedures and provided written consent. 

.2. Imaging protocol 

Imaging was performed using a Siemens MAGNETOM Prisma 3 T

canner equipped with a standard 32Ch-receive head coil. Anatom-

cal reference images were collected with a MP2RAGE sequence

 Marques et al., 2010 ) and parameters: voxel size = 0.9 mm isotropic,

atrix size = 192 × 240 × 256, iPAT = 2, Partial Fourier = 6/8,

E = 2.87 ms, TR = 5000 ms, TI1 = 700 ms, FA1 = 4°, TI2 = 2500 ms,

A2 = 5°, echo spacing = 7.18 ms. Functional images were obtained

ith a 3D GE-EPI sequence ( Stirnberg and Stöcker, 2021 ) and param-

ters: voxel size = 0.82 mm isotropic, TR = 2200 ms, TE = 27 ms,

PAT = 3, Partial Fourier = 6/8 (zero-filling reconstruction), FA = 45

egrees, and matrix size = 176 × 176 × 26 where the 26 axial slices were

ligned perpendicularly with respect to the surface of the hand knob in

1 ( Fig. 1 ). Adaptive combine reconstruction of magnitude and phase

mages was done using the vendor provided Prescan Normalize setting.

dditionally, we used a SS-SI-VASO sequence ( Huber et al., 2014 ) (voxel

ize = 0.82 mm isotropic, TR = 4739 ms, TE = 27 ms, iPAT = 3, Par-

ial Fourier = 6/8, FA = 18 degrees, and matrix size = 176 × 176 × 26,

olumes = 100) with the same readout strategy and resolution as the

unctional sequence to obtain T1-weighted images with good anatomical

ontrast, and distortions similar to the functional images ( Kashyap et al.,

018 ; van der Zwaag et al., 2018 ). Matched distortions enabled high

uality registration to the functional images without the need for dis-

ortion correction, and the T1-weighted contrast further aided nonlinear

egistration of the MP2RAGE image to EPI volumes. VASO images were

nly used to get the distortion-matched T1-weighted image and not for

unctional mapping or similar. 

.3. Experimental protocol 

Each subject was scanned in 3–8 sessions on 3–4 consecutive days

esulting in 23 total sessions, 3 of which were excluded (see Table S1 for

etail). Note that one of these sessions was used in a supplementary anal-

sis to assess the effect of motion (Fig. S1). The procedure was identical

cross all sessions to enable assessment of across-session consistency of

aminar responses. The paradigm consisted of a single functional run

ith 35.2 s trials (17.6 s tapping and 17.6 s rest) repeated 30 times re-

ulting in a total duration of ∼18 min and acquisition of 480 functional

olumes (exclusive 4 dummy volumes). Tapping blocks included alter-

ating finger tapping movements between the right index and middle

ngers. The frequency of tapping for each finger was ∼2.5 Hz and was

uided visually by a blinking marker projected onto a semi-transparent

creen placed inside the MRI scanner, visible to the subject via a mir-

or mounted on the head coil. Before entering the scanner, subjects were
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Fig. 1. Overview of acquisition and analysis pipeline (A) The imaging slab was positioned approximately perpendicular to the cortical surface of the hand knob in 

M1 (left hemisphere) based on the initially acquired anatomical image (MP2RAGE). (B) The functional paradigm of each session consisted of ∼18 min (including 

functional localizer) block designed finger tapping (17.6 s tapping alternating with 17.6 s rest, repeated in 30 trials). (C) NORDIC denoising was applied to the 

functional time series data after DICOM-to-NIFTI conversion. (D) Motion corrected NORDIC and noNORDIC time series were then submitted to phase regression 

to correct for large vein effects. An example phase time series from a voxel which is located towards CSF, shown in green to the left, has a clear modulation with 

respect to the task and thus presumably contains a large vein. The linear fit between the phase time series and magnitude time series is subtracted from the original 

magnitude signal (red) leading to suppression of the paradigm modulation in the resulting “micro ” time series (blue). The same is shown to the right for a voxel in 

gray matter where a clear task modulation can be observed in the magnitude time series only, resulting in a largely unchanged micro time series. E) The ROI of each 

subject was defined in native space of the first session by first anatomically locating the hand knob ( Yousry et al., 1997 ). The ROI was then manually drawn in a 

part of the knob where a functional localizer from the first session showed strong deep layer activation. Activation maps from the other sessions were then aligned 

to the space of the first session and thereby evaluated in the same ROI. 
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t  
nstructed to lie as still as possible, while keeping their gaze on the blink-

ng marker in both tapping and resting blocks. Head motion was further

inimized by tape across the forehead for haptic feedback ( Krause et al.,

019 ) and by placing inflatable padding around the head which could

e manually adjusted by the subject to optimize comfort. Body motion

as reduced by wrapping the subject in a heavy blanket. The duration

f each scanning session was kept below 1 h. 

.4. Data analysis 

.4.1. Preprocessing 

After DICOM-to-NIFTI conversion, functional and VASO time

eries were denoised with NORDIC ( Vizioli et al., 2021 , https:

/github.com/SteenMoeller/NORDIC _ Raw , commit 74999d6, down-

oaded 27,042,022) using the full complex valued data. In NORDIC,

ingular value decomposition (SVD) is performed on patches of func-

ional time series data (represented as Casorati matrices), where all com-

onents with singular values below a certain threshold are removed.

his threshold is determined as the average of the largest singular value

cross Monte Carlo-simulated thermal noise matrices. The variance as-

ociated with these random matrices is estimated directly from the mea-

ured data, either by an appended noise-only acquisition or from an area

utside the brain without signal contributions (see Vizioli et al. 2021 for

etails). Here, the latter approach was employed. In addition, we em-

loyed more aggressive denoising by setting the option ARG.factor_error

FE) equal to 1.15 (default is 1), which scales the aforementioned thresh-
3 
ld such that more components are removed. The more aggressive de-

oising comes with a risk of altering the temporal correlations in the

ata, but as shown in Figs. S2 and S3, additionally removed components

ppeared to be dominated by thermal noise. 

The denoised functional magnitude time series were then motion

orrected in SPM12 (Functional Imaging Laboratory, University College

ondon, UK). To optimize the alignment around the hand knob of M1,

 spatial weighting mask was applied with largest weights on the hand

nob and progressively smaller weights towards the periphery of the

rain. The phase images were converted into real and imaginary parts

rior to reslicing using realignment parameters estimated from the mag-

itude images. These resliced (complex) images were converted back to

hase values and unwrapped in the temporal direction. For the purpose

f comparing scenarios with and without application of NORDIC, the

stimated motion parameters were also applied to the same magnitude

nd phase time series without denoising (noNORDIC). 

SS-SI-VASO provides 2 images per TR, one where the blood has been

ulled by an inversion pulse, and a second where the blood has not been

ulled ( Huber et al., 2014 ). These images were first motion corrected

eparately due to their distinct contrasts, and then registered to the first

mage of the functional time series in a single interpolation step. The

ignal variability of the combined nulled and not-nulled time series was

hen used to compute a T1-weighted image with high anatomical con-

rast ( Beckett et al., 2020 ; Huber et al., 2017 ). Due to this T1-weighted

ASO image theoretically being in the same distorted space as the func-

ional BOLD EPI images, while having similar contrast as MP2RAGE,

https://github.com/SteenMoeller/NORDIC_Raw
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t was used as a “high-quality reference image ” for non-linear registra-

ion of MP2RAGE to EPI-space. The reason for using MP2RAGE, even

hough the T1-weighted VASO image has sufficient contrast for segmen-

ation, was that it enabled an automatic initial segmentation estimate

sed for guidance (see Methods Section 2.4.4 ), and facilitated across

ession alignment (see below). MP2RAGE to EPI-space registration was

one by first estimating initial parameters for alignment of MP2RAGE to

he T1-weighted VASO reference in ITK-SNAP ( Yushkevich et al., 2006 ),

ollowed by rigid, affine and non-linear registration steps ( SyN algo-

ithm) in ANTS ( Avants et al., 2011 ). The same procedure was used

o align MP2RAGE images from each session to the MP2RAGE of the

rst session in each subject. These parameters were then used to align

unctional maps to the space of the first session in which analyses for

ll sessions could be performed (see Methods Section 2.4.4 ). We care-

ully inspected the outputs to ensure all registrations were of sufficient

ccuracy for laminar analysis. 

.4.2. Implementation of phase regression 

Next, phase regression was applied according to the scheme

escribed in previous reports ( Curtis et al., 2014 ; Menon, 2002 ;

tanley et al., 2020 ; Vicente et al., 2021 ) to correct for bias associated

ith large veins. The main principle is to remove the linear fit between

agnitude and phase time series from the magnitude time series. This

s based on the physical property that macrovascular directional flow

hanges result in a change in the phase signal, whereas microvascular

ow has no common direction resulting in no net phase change (for de-

ails, see Menon 2002 ). In line with the terminology of previous work

 Menon, 2002 ), we will refer to the resulting time series as micro time

eries. This is not meant to suggest that these will be free of all macrovas-

ular influence, but that they are more weighted towards the micro vas-

ulature. Before phase regression, magnitude and phase time series were

ltered on a voxel wise basis by first fitting a general linear model (GLM)

ith a 16’th order FIR-set modeling the paradigm, and 60 nuisance re-

ressors (24 motion ( Friston et al., 1996 ), 20 RETROICOR ( Glover et al.,

000 ) and 16 high pass) and then subtracting the nuisance fit from the

riginal time series. Prior to nuisance regression the design matrix con-

aining the nuisance regressors was orthogonalized with respect to the

aradigm. In the event of stimulus locked motion, this orthogonaliza-

ion leaves paradigm effects in the phase regressor unchanged even af-

er nuisance filtering. Voxel wise linear fit parameters between filtered

agnitude and phase time series were estimated with a deming regres-

ion model ( Hall, 2022 ), which is necessary as it accounts for noise on

oth the x- and y-variables ( Cornbleet and Gochman, 1979 ), whereas

tandard Ordinary Least Squares (OLS) regression assumes noise free

egressors. The fit needs to be conditioned by the relative noise levels

etween magnitude and phase data, which determines the angle of the

esiduals to the line of the best fit. To accommodate this, the voxel-

ise residual variance in the filtered magnitude and phase time series

as estimated by further subtracting the fit of the 16’th order FIR-set to

lso remove the variance explained by the paradigm. The relative noise

evel was then given as the ratio between the standard deviation of the

agnitude residuals and the standard deviation of the phase residuals. 

.4.3. Activation maps 

GLMs were then computed using AFNI ( Cox, 1996 ) where design

atrices consisted of paradigm regressors convolved with a canonical

emodynamic response function. A separate parameter estimate (beta)

as estimated for each of the 30 tapping trials. To avoid “double dip-

ing ” ( Kriegeskorte et al., 2009 ), odd trials were used for functional

ocalization of ROIs only (unless stated otherwise), whereas even tri-

ls were used in all further analyses. Moreover, all ROIs were defined

ased on odd trials from the first session only. Separate GLMs were es-

imated for each of the following time series; filtered magnitude time

eries with and without NORDIC, and micro time series with and with-

ut NORDIC, resulting in 4 statistical maps per session (called NORDIC-

agn, noNORDICmagn, NORDICmicro and noNORDICmicro, respec-
4 
ively). Time series and regressors were scaled to yield beta maps re-

ecting percent signal change with respect to baseline. 

.4.4. ROI definition, segmentation and generation of layer profiles 

ROIs were manually defined in native space of the first session for

ach subject. Functional maps of all other sessions were aligned to the

pace of the first session (see Methods Section 2.4.1 ) and thereby eval-

ated in the same ROI. Each ROI was defined in the hand knob area of

rodmann area 4a (BA4a) similarly to previous layer-fMRI reports fo-

using on M1 and finger tapping ( Beckett et al., 2020 ; Chai et al., 2020 ;

an et al., 2021 ; Huber et al., 2017 ; Persichetti et al., 2020 ; Shao et al.,

021 ). First, the hand knob was visually identified from its characteristic

mega-shape ( Yousry et al., 1997 ) and voxel selection was limited to the

pper and lateral part of the knob corresponding to BA4a ( Huber et al.,

017 ). Gray matter (GM) boundaries were manually drawn on an up-

ampled grid (0.2 mm in plane resolution) in this area guided by an

utomated segmentation obtained with CAT12 ( http://www.neuro.uni-

ena.de/cat/ ). A depth map comprising the relative cortical depth (val-

es between 0 and 1) of voxels between these boundaries was then com-

uted with LAYNII ( Huber et al., 2021c ) using the equivolume metric

 Waehnert et al., 2014 ). The point at which voxels were estimated to be

0/50 white matter (WM) and GM was located at a relative depth be-

ween 0.1 and 0.2. The equivalent point for GM and cerebrospinal fluid

CSF) was between 0.8 and 0.9. The hand knob is functionally divided

nto topographical digit representations ( Huber et al., 2020 ). To iden-

ify the index-middle finger representation, which is expected to have

elatively strong deep layer activation for the present tapping task, each

OI was defined in columns where the functional localizer (based on

dd trials from the first session, see Methods Section 2.4.3 ) had strong

ctivation in deep layers (between depths 0.3 and 0.4 to reduce par-

ial voluming with WM and middle layers, respectively). Note that ROIs

ere defined as columns going roughly perpendicular onto the surface

nd without holes to make it somewhat anatomical meaningful. All ROIs

panned multiple slices and the total number of voxels within each ROI

ere in the range 77–113 (see Fig. S4 which also shows the depth dis-

ribution of ROI voxels). 

Layer profiles were generated by plotting the beta of each ROI voxel

s a function of its cortical depth. The depth of each voxel, that is,

he correspondence between its center and the underlying depthmap

n upsampled resolution, was inferred by Nearest Neighbor interpola-

ion using the spm_sample_vol -function in SPM12. Beta-estimates from

ingle voxels are quite noisy, so MATLAB’s (Mathworks Inc.) movmean -

unction (window size = 0.2) was used to get the final layer profiles for

ach of the 15 test-betas which were averaged to obtain a single profile

er session per data version. In order to run group analyses, without

ias from specific depths being sampled differently across subjects, pro-

les were interpolated at 18 equally spaced depths between 0.075 and

.925. This approach was chosen, over interpolation of the activation

aps, in order to more directly interpolate between voxels sampled at

imilar depths. 

.4.5. Evaluation of sensitivity and macrovascular contamination 

Sensitivity analysis was conducted by submitting the 15 betas to a

econd level analysis where voxel wise t-values were calculated as 𝑡 =
𝑥̄ 

𝑠 ∕ 
√
𝑛 

where 𝑥̄ and s is the mean and standard deviation, respectively,

cross beta estimates (even trials only), and n = 15 beta estimates. This

pproach is in contrast to the typical calculation of t-values from a first

evel fMRI analysis where residuals from the GLM is used directly. It

as chosen to acknowledge that the degrees of freedom potentially may

e affected by NORDIC denoising. By generating t-values from single

rial beta-estimates, which are assumed to be independent, this potential

oncern is largely removed. 

A quantitative measure of macrovascular contamination was ob-

ained by fitting a line to the across-session mean layer profiles of

ach subject. The slopes of these lines represent the degree of bias

owards the pial surface, previously referred to as inverse specificity

http://www.neuro.uni-jena.de/cat/
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 Beckett et al., 2020 ). Two-way repeated measures ANOVA with

actors NORDICversion (NORDIC/noNORDIC) and veinCorrection (mi-

ro/magnitude) was employed to evaluate statistical significance of dif-

erences in slopes across the 4 combinations of NORDIC/noNORDIC and

agnitude/micro data versions. 

Data is presented as mean ± standard deviation unless otherwise

tated. The significance level was set to 𝛼 = 0.05. 

.5. Data and code availability 

The data are available upon request and signed data sharing and

ata processing agreements as part of Aarhus University data sharing

egulations. Analysis code will be made publicly available on figshare:

0.6084/m9.figshare.19925483.v1 

. Results 

The effect of NORDIC on signal stability was quantified by comput-

ng an average tSNR-value of all ROI-voxels for each session which was

veraged to one tSNR-value per subject. This was done using detrended

ut otherwise unfiltered motion corrected magnitude time series with

nd without NORDIC. The mean tSNR was ∼3 times larger with NORDIC

40.46 ± 5.32), compared to without NORDIC (12.32 ± 1.39) (paired t-

est, degrees of freedom = 4, p < 0.001). The effect of such increased

emporal stability on activation maps is illustrated in an example sub-

ect in Fig. 2 A. In the high tSNR case, the hand knob is clearly activated

nd accompanied by much less false positive activation outside of M1.

urthermore, laminar profiles with and without NORDIC in an example

ubject are depicted in Fig. 2 B showing that the consistency across trials

s clearly facilitated by denoising. Across-trial mean profiles are simi-

ar whereas the variability around the mean is notably increased when

enoising is omitted. Fig. 2 C depicts absolute single voxel t-values of

ll sessions in each subject. The first row shows that t-values are gen-

rally elevated with NORDIC compared to without NORDIC for both

magn ” and “micro ”, suggesting improved sensitivity after denoising.

hase regression, on the other hand, has been reported to come along

ith reduced sensitivity ( Stanley et al., 2020 ) in which case we would

xpect larger t-values for “magn ” compared to “micro ”. The second row

ndeed shows this to be the case when NORDIC is applied. Conversely,

oNORDIC t-values seem to be distributed fairly evenly around the iden-

ity line. Taken together, this suggests that phase regression reduces sen-

itivity to a larger degree when NORDIC is applied compared to when it

s not. However, as will be addressed in later sections, part of the effect

s likely explained by reduced sensitivity towards spatially unspecific

raining veins and is thus desired. 

Thermal noise is not only reduced by the application of NORDIC,

ut also as a consequence of averaging across trials and voxels. To in-

estigate the impact of NORDIC on laminar profiles in the presence of

veraging, we generated profiles from subsamples of the total number

f trials ( N = 30). This is shown in Fig. 3 for different subsampling fac-

ors in an example subject. Without NORDIC, notable variability across

ubsampled profiles already occurs when 15 trials are averaged. Con-

ersely, NORDIC profiles stay similar even when only 5 trials are aver-

ged. This suggests that thermal noise still had a substantial effect on

oNORDIC profiles (average of 15 trials) at the present ROI size (90

oxels in total for this subject). Fig. S5 shows results when ROI size is

alved by discarding every second voxel (based on depth) to illustrate

ow the benefit of NORDIC increases when ROI size becomes smaller.

o further illustrate the thermal noise contribution at the present ROI

ize, we computed periodograms of modelled non-white noise and ther-

al noise. Based on these we found that without NORDIC, thermal noise

till seems to have a significant contribution even after averaging across

oxels (see Fig. S6). 

Fig. 4 A shows hand knob activation maps of the 4 different data

ersions in an example slice from the first session of each subject. Com-

arison of NORDICmagn and NORDICmicro activation maps suggests
5 
hat voxels with large response suppression after phase regression are

redominantly located where large veins are expected, i.e., towards su-

erficial layers and CSF, supporting the notion that phase regression

ainly suppresses macrovascular signal contributions. While the ma-

ority of voxels likely to contain large veins (i.e., superficial/CSF voxels

ith very strong activation in magnitude maps) appear to have strongly

uppressed responses after phase regression, there are obvious cases

blue arrows points to examples of this) where the method left residual

acrovascular signal, highlighting that although the method reduces

acrovascular contributions, it is not perfect. Since the effectiveness

f phase regression is CNR-dependent, we suspected its performance to

e reduced when NORDIC was omitted, which is supported when com-

aring noNORDICmagn and noNORDICmicro activation maps, where

ifferences are barely visible and most of the unwanted signal towards

arge veins remains unsuppressed. This implies that NORDICmicro pro-

les should have smaller superficial bias compared to noNORDICmicro

rofiles. This was confirmed using ANOVA with slopes of linear fits to

ach subject’s across-session mean profile as the dependent variable,

hich revealed a significant NORDICversion by veinCorrection interac-

ion ( p = 0.036). That is, the difference in slopes between magnitude-

nd micro data versions was larger when NORDIC was applied com-

ared to when it was not (see average slope across subjects for each data

ersion in Fig. 4 B). This effect is further visualized in Fig. 4 C, which il-

ustrates that noNORDICmicro across-subject mean profiles have steeper

radients from WM to CSF compared to NORDICmicro (Bonferroni cor-

ected Post hoc comparison, p = 0.044). Note that the difference in per-

ent signal change between group mean magnitude and micro profiles

s on average largest in CSF and decreases progressively towards WM,

mplying that bias towards superficial layers is reduced in the micro

rofiles. 

Fig. 5 A displays NORDICmagn and NORDICmicro profiles for each

ession plotted together for each subject. It accompanies the across-

ubject mean results in Fig. 4 C by showing how the reduced bias to-

ards the surface replicates across sessions. Fig. 5 A further illustrates

he robustness of laminar profiles across sessions. To quantify across-

ession robustness of NORDICmicro laminar profiles, we computed the

oefficient of variation (CV), i.e., the standard deviation over sessions di-

ided by the mean (done separately for each layer and then averaged as

n Huber et al. 2018 ). The average session-CV across subjects was 26.20

 ± 7.78 %. Similarly, Fig. 5 B depicts the robustness of NORDICmicro

rofiles across trials for each session and subject. Laminar patterns of ac-

ivation appear highly consistent across trials, with trial profiles closely

ollowing the mean profiles of individual sessions. This was quantified

s the trial-CV, i.e., the standard deviation across trials divided by the

ean, which was done for each layer and session separately and then

veraged. The average trial-CV across subjects was 27.53 % ± 14.67 %.

. Discussion 

The main purpose of the present study was to test if the feasibil-

ty of laminar fMRI at 3T with GE-BOLD could be improved through

ensitivity gains obtained by NORDIC denoising. 3T fMRI with submil-

imeter spatial resolution suffers from poor signal stability which partly

xplains why nearly all existing laminar fMRI studies were performed

t 7T systems. The results presented here demonstrate how this chal-

enge can be overcome with NORDIC denoising, allowing for reliable

etection of laminar activation both within and across sessions at 3T.

his can be achieved with standard MR hardware, without application

f explicit spatial smoothing kernels which degrade spatial specificity,

nd in a single functional run of 18 min (including functional local-

zer) making it highly practical. Additionally, we tested phase regression

 Menon, 2002 ) as a method to reduce superficial bias caused by large

eins and hence improve microvascular weighting. We found evidence

or significant improvements in obtained layer profiles, although some

acrovascular contribution likely remained. 

http://10.6084/m9.figshare.19925483.v1
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Fig. 2. Effect of NORDIC on signal stability and sensitivity (A) NORDICmagn and noNORDICmagn tSNR and activation maps in an example subject. Comparison 

suggests reduced false positive activation after denoising as a result of improved tSNR. (B) NORDICmagn and noNORDICmagn laminar profiles of all sessions from 

the same subject as in (A). Colored profiles represent single trials with across-trial mean profiles plotted on top in black. Mean profiles are similar across the two 

data versions, whereas variability around the mean is notably higher without NORDIC denoising. Error bars represent SEM across trials ( N = 15). Asterisks denote 

that half the trials from the first session was used for ROI localization, see Methods Section 2.4.3 C) Absolute t-values of ROI voxels for all sessions in each subject. 

The first row depicts this for NORDIC versus noNORDIC. The second row depicts this for “magn ” versus “micro ”. 
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.1. Sensitivity improvement 

A prerequisite for sensitivity, in terms of detecting functional re-

ponses, is a stable underlying signal which can be quantified as tSNR.

ere it was computed from motion corrected and detrended NORDIC-

agn data before motion and RETROICOR regressors were filtered out

o avoid uneven comparison with previous ultrahigh field ( ≥ 7T) sub-

illimeter studies. The average tSNR within ROIs was 40.46 ± 5.32

cross subjects, which is comparable to, if not higher than what is com-

only reported for submillimeter 7T GE-BOLD setups with similar or

oarser resolution compared to the present study ( Aitken et al., 2020 ;
6 
eckett et al., 2020 ; Huber et al., 2018 ; Rua et al., 2017 ; Stanley et al.,

020 ; Zaretskaya et al., 2020 ). For example, Huber et al. (2018) ,

ua et al. (2017) and Aitken et al. (2020) reported tSNR/ 𝑚𝑚 

3 values

f 46.4, 25.3, and 24.5, respectively, in motor and visual cortex ROIs

73.6 in the present study). Note that tSNR depends on factors such as

PI-readout strategy (2D versus 3D acquisitions), acquisition parame-

ers (repetition time, flip angle, etc.), image SNR (and thus voxel size),

nd ROI selection (all brain voxels versus specific subsets). Choices in se-

uence design, preprocessing and ROI selection may thus partly explain

ow the present 3T setup has comparable tSNR values to 7T observa-

ions. However, the main reason is likely the application of NORDIC de-
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Fig. 3. Impact of NORDIC on laminar profiles. Green and purple profiles represent NORDICmagn and noNORDICmagn, respectively. Rows and columns represent 

different sessions and subsampling factors, respectively. Profiles for the first column were generated by averaging across all trials. For the second column, one profile 

is generated by averaging across trials 1:2:30 (every other trial starting from the first) and the second profile by averaging across trials 2:2:30 (every other trial 

starting from the second), and similarly for the third and fourth columns. Without NORDIC noticeable variability across subsampled profiles is observable already 

when 15 trials are averaged. After NORDIC, profiles remain relatively stable also when only 5 trials are averaged, suggesting that denoising still has a considerable 

effect on laminar profiles even after thermal noise has been reduced by averaging across voxels and trials. 
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oising, which is apparent from the fact that in our sample it increased

SNR by a factor of ∼3 on average. Importantly, NORDIC increases tSNR

ithout adding noteworthy spatial smoothness to the images (see Fig.

7 and Dowdle et al. 2021 , Vizioli et al. 2021 ). In one of the origi-

al NORDIC articles, the developers found that denoising on average

ncreased tSNR by a factor of more than 2 ( Vizioli et al., 2021 ). The

arger observed effect of NORDIC in the present data might partly be

xplained by the fact that methods for determining the threshold un-

er which components with lower singular values were discarded, dif-

ered across studies (see Methods Section 2.4.1 , Figs. S2 and S3). Also,

n contrast to Vizioli et al. (2021) , we used the version of NORDIC that

orks in image space as opposed to raw data space, without the need

or an appended noise volume and g-factor map. A complementary ex-

lanation is that our runs were significantly longer than those used by

izioli et al. (2021) resulting in greater data redundancy which theo-

etically should lead to better separation of signal and noise and thus

ore effective denoising. Finally, the degree to which thermal noise is

ominant scales inversely with field strength ( Triantafyllou et al., 2005 )

hich loosely speaking implies that more noise is present to begin with

nd available for removal at 3T. 
7 
.2. Improved microvascular weighting 

GE-EPI is the most frequently applied sequence in layer-fMRI stud-

es due to its superior statistical efficiency and ease of implementation.

owever, its weighting towards macrovasculature is well established

 Menon, 2012 ; Turner, 2002 ; Uluda ǧ et al., 2009 ; Yacoub et al., 2003 )

nd needs to be dealt with for laminar purposes where spatial specificity

s of the essence. The superficial bias that follows from large vein sen-

itivity was clearly present in the NORDICmagn profiles which indeed

ossessed the characteristic positive gradient from WM to CSF ( Figs. 4 C

nd 5 A) consistently found with GE-BOLD ( Aitken et al., 2020 ; de Hol-

ander et al., 2021 ; Han et al., 2021 ; Huber et al., 2015 ; Kok et al., 2016 ;

hao et al., 2021 ; Stanley et al., 2020 ). Also, activation maps revealed

igher percent signal changes towards the surface and in CSF which adds

o the evidence for large vein contamination ( Fig. 4 A). Phase regression

as recently shown promise as a method to reduce the macrovascular

ensitivity of GE-BOLD in 7T submillimeter settings to obtain microvas-

ular specificity comparable to regular SE-BOLD ( Stanley et al., 2020 ,

ut see Han et al. 2021 for SE-sequence with improved microvascu-

ar weighting). If phase regression predominantly reduces signal orig-
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Fig. 4. Effect of phase regression on superficial bias (A) Hand knob activation maps for the 4 different data versions in example slices from each subject. With 

NORDIC, most voxels likely to contain large veins have strongly suppressed responses after phase regression. However, residual macrovascular contributions are still 

left in NORDICmicro activation maps as pointed out by the blue arrows. Without NORDIC, the difference before and after phase regression appears small and most 

unwanted signal towards large veins remains unsuppressed. (B) Average of slopes of linear fits to each subject’s across-session mean profile for the 4 different data 

versions (colored profiles in C). Colored dots represent datapoints of each subject. Error bars represent SEM across subjects ( N = 5). (C) Magnitude and micro profiles 

plotted together for all subjects both with and without NORDIC. Colored profiles represent single subjects (red = magnitude and blue = micro) with across-subject 

mean profiles plotted on top in black (dashed = magnitude and solid = micro). Straight lines indicate linear fits to each of the 4 mean profiles. The difference in 

slopes between magnitude and micro profiles is significantly larger with NORDIC, suggesting a more effective phase regression compared to without NORDIC. 
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nating from large veins, we should see larger signal suppression to-

ards the surface and in CSF. We did indeed find evidence for this

n line with previous observations ( Curtis et al., 2014 ; Menon, 2002 ;

tanley et al., 2020 ; Vicente et al., 2021 ); the difference in magni-

ude between NORDICmagn and NORDICmicro profiles progressively

ncreased from WM to CSF ( Fig. 4 C) and the same effect is observable

irectly in activation maps ( Fig. 4 A). The degree of superficial bias was

stimated as the slope of the linear fit to across-session mean profiles of
8 
ach subject inspired by previous efforts ( Beckett et al., 2020 ; De Mar-

ino et al., 2013 ; Huber et al., 2017 ). The extent of the effect is then re-

ected in the decrease of the slope from NORDICmagn to NORDICmicro

hich is shown in Fig. 4 B. Although the slope might be a simplified mea-

ure of inverse specificity, as also pointed out by Beckett et al. (2020) ,

t does illustrate that phase regression substantially reduced the gradi-

nt from WM to CSF which is generally believed to originate from large

eins. Interestingly, the effect of phase regression, as measured by its
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Fig. 5. The effect of phase regression on superficial bias and reproducibility across sessions and trials A) NORDICmagn and NORDICmicro layerprofiles plotted 

together for each subject. Colored profiles represent single sessions (red = magnitude and blue = micro) with across-session mean profiles plotted on top in black 

(dashed = magnitude and solid = micro). Profiles have seemingly smaller superficial bias after phase regression and appear consistent across sessions. B) NORDICmicro 

layerprofiles of all sessions and subjects. Colored profiles represent single trials with across-trial mean profiles plotted on top in black. Individual trial profiles seem 

to closely follow the mean, implying robust laminar patterns of activation within sessions. Error bars = SEM across trials ( N = 15). Asterisks denote that half the 

trials from the first session was used for ROI localization, see Methods Section 2.4.3 

9 
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mpact on slopes, was significantly larger when NORDIC was applied

 Fig. 4 B and 4 C), illustrating its dependency on CNR of both the mag-

itude and phase time series. This is supported by a larger reduction

n t-values after phase regression for NORDIC compared to noNORDIC

 Fig. 2 C), which we interpret to mainly reflect a reduced sensitivity to-

ards macrovasculature. On the other hand, this also illustrates a limi-

ation of the method, i.e., that superficial bias will deviate across exper-

mental settings with varying noise levels, which needs to be considered

hen interpreting results. 

Having said the above, several lines of evidence indicate that non-

egligible contributions from macrovascular sources were still in play.

irst, even though the group layer profile for NORDICmicro tends to

atten towards CSF as compared to the NORDICmagn profile which

eeps rising, the peak is located at the GM/CSF border, whereas se-

uences proven to have higher spatial specificity peaks within the

M of M1 during finger tapping (VASO/VAPER: ( Beckett et al., 2020 ;

hai et al., 2020 ; Huber et al., 2017 ; Persichetti et al., 2020 ), SE/GRASE:

 Beckett et al., 2020 ; Han et al., 2021 ), ASL: ( Shao et al., 2021 )). A

eak towards CSF after phase regression was also observed for the vi-

ual cortex in Stanley et al. (2020) , whereas neural activity is expected

o peak in middle layers during visual stimulation ( Liu et al., 2020 ).

econd, NORDICmicro activation maps still contain CSF voxels with

trong percent signal changes ( Fig. 4 A). Third, the lateral end of the

and knob (BA4a) in M1 has typically been associated with a double

eak response when examined with more microvascular weighted se-

uences at 7T ( Beckett et al., 2020 ; Chai et al., 2020 ; Guidi et al., 2020 ;

uber et al., 2017 ; Shao et al., 2021 ). This feature has been used as a

allmark for spatial specificity and has accordingly been less robustly

bserved with GE-BOLD where peaks become less distinct as a result of

ignal drainage caused by intracortical ascending veins and pial veins

 Huber et al., 2017 ; Huber et al., 2018 ; Persichetti et al., 2020 ). In the

resent study, 3 of 5 subjects consistently had either a double peak re-

ponse or a superficial peak with a “shoulder ” in the deep layers and

he group mean profile might best be described as the latter. This is in

ine with GE-BOLD results from 7T where the double peak feature in

1 during finger tapping was found in 1/3 of subjects ( Huber et al.,

018 ) and the group profile had a superficial peak with a “shoulder ”

n the deep layers ( Huber et al., 2017 , see also ( Beckett et al., 2020 ;

uidi et al., 2016 , 2020 ; Huber et al., 2015 ; Persichetti et al., 2020 ;

hao et al., 2021 ). We find it promising that the results comply with ex-

ectations from 7T studies, especially when considering the inherently

arger contribution of large vessels at 3T. However, the lack of clear

ouble peak features across subjects, regardless of field strength, high-

ights the general issue of macrovascular contamination in GE-BOLD,

hich might be reduced by phase regression but clearly not elimi-

ated fully. It should further be mentioned that although we do be-

ieve that the lack of two distinct peaks is explained by macrovascular

nfluence, it may also partly be explained by the fact that we extract

ignal from relatively large ROIs spanning several slices ( Han et al.,

021 ; Pais-Roldán et al., 2020 ). Moreover, not all subjects have double

eak profiles even with non-GE-BOLD sequences ( Beckett et al., 2020 ;

hao et al., 2021 ), thus we cannot rule out that more distinct peaks

ould emerge in the group profile with different subjects. Finally, it

s not completely clear how well the microvascular signal is preserved

n GM voxels which also contain large veins. To properly separate mi-

ro and macrovascular signal components the method assumes temporal

ncoupling between hemodynamic responses of the two compartments

 Stanley et al., 2020 ). Considering that temporal delays between the two

ypes of vasculature are on the order of about 1–3 s ( Kay et al., 2020 ), it

ay be too subtle to be resolved with TRs commonly employed within

he field. 

Blood related susceptibility changes around vessels giving rise

o extravascular BOLD signal changes are known to be observable

ven in voxels remote from the vessel, especially for large pial veins

 Kashyap et al., 2018 ; Li et al., 2012 ; Moerel et al., 2018 ). It is mainly

his so-called “blooming effect ” in addition to intravascular BOLD sig-
10 
als from pial veins that are expected to be suppressed with phase re-

ression at high spatial resolution ( Stanley et al., 2020 ). Phase regres-

ion might also suppress signal from the largest intracortical ascending

eins to some extent ( Klassen and Menon, 2005 ; Stanley et al., 2020 ).

owever, the majority of these are expected to be too small to produce

easurable phase modulations and will thus not be affected by phase

egression. Such veins hence represent a likely explanation for some

f the remaining macrovascular contamination. Promising methods to

educe the component of superficial bias originating from intracortical

scending veins have been proposed. For example, Markuerkiaga et al.

2016 , 2021 ) used spatial deconvolution to unmix the signal leakage

rom deep to superficial layers (see also Havlicek and Uluda ğ 2020 ,

einzle et al. 2016 , Marquardt et al. 2018 ). This method could po-

entially be combined with phase regression as these techniques have

omplementary strengths and weaknesses. 

In summary, the results presented here support that phase regres-

ion substantially reduces superficial bias and the associated decrease

n sensitivity likely reflects a desired feature of reduced macrovascular

eighting. It comes, however, with some limitations that need to be

onsidered when selecting a tool to handle the problem of veins which

s mandatory in virtually any laminar fMRI application. We opted to test

his particular method due to its practicality and expected synergy with

ORDIC (see Introduction). We would like to note that multiple alterna-

ive deveining methods have shown great promise and could be consid-

red dependent on study design and aim. A thorough description of such

ethods is out of the scope of this work, but have been nicely discussed

lsewhere (see for example Huang et al. 2021 , Huber et al., 2021c ,

ay et al. 2019 , Koopmans and Yacoub 2019 , Stanley et al. 2020 and

eferences therein). 

.3. Across-session and across trial reproducibility 

Each subject was scanned in multiple sessions on multiple days

o assess across-session reproducibility of observed layer profiles after

ORDIC and phase regression. To examine the result, we depicted the

ean profiles of all sessions for each subject in the same plot ( Fig. 5 A).

isual assessment indicates that individual session profiles followed the

cross-session mean profiles with reasonable consistency, both regard-

ng the laminar pattern and response magnitude. This is quantified as

n average session-CV for NORDICmicro of 26.20 % ± 7.78 % across

ubjects, which is comparable to the across-days CV-estimate observed

or VASO and BOLD (25 % and 30 %, respectively) in a 9.4T lami-

ar fMRI finger tapping study ( Huber et al., 2018 ). For reference, non-

aminar supramillimeter studies found CV’s of 24 % and ∼28 % (means

cross subjects) for the variability of response magnitudes during mo-

or tasks in M1 ROIs across 3 sessions at 3T ( Tjandra et al., 2005 ) and

T ( Krieger et al., 2014 ), respectively. M1 laminar fMRI studies that

canned the same participants in multiple sessions and where associ-

ted layerprofiles of individual sessions were reported are sparse making

omparison difficult. However, this was done in Chai et al. (2020) who

lso used a finger tapping paradigm and focused the analysis onto ROIs

rom the hand knob, although with a so-called VAPER sequence rather

han GE-BOLD. No quantitative estimate was presented, but visual com-

arison with profiles from that study further supports that an across-

ession reliability in agreement with previous M1 studies, across field

trengths and spatial resolutions, could be achieved despite the chal-

enges of submillimeter fMRI at 3T. 

NORDICmicro profiles are depicted in Fig. 5 B for each experimental

ession and shows that also at the level of single trials, profiles seem

eproducible. This is quantified as a trial-CV of 27.53 % ± 14.67 %

cross subjects for NORDICmicro. CV-estimates for single trials are to

ur knowledge not reported in the laminar fMRI literature, but for ref-

rence, the CV across runs was 25 % for both VASO and BOLD in the

reviously mentioned 9.4T study ( Huber et al., 2018 ). 
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.4. Previous 3T submillimeter studies 

The present demonstration of laminar fMRI being feasible at

T with GE-BOLD is not the first; several previous studies have

uccessfully obtained layer-dependent measures of activation at 3T

 Kim and Ress, 2017 ; Koopmans et al., 2010 ; Markuerkiaga et al.,

021 ; Puckett et al., 2016 ; Ress et al., 2007 ; Scheeringa et al.,

016 , 2022 ; Taso et al., 2021 ; Wu et al., 2018 ). For example,

arkuerkiaga et al. (2021) demonstrated that by averaging re-

ponses across patches of cortex to suppress thermal noise, similar

NR profiles could be obtained at low field strength compared to

hose obtained at 7T. This strategy was for example employed in

cheeringa et al. (2016) to demonstrate how electroencephalographic

ignals could be related to layer-dependent BOLD responses in early vi-

ual cortex. Additional strategies that has been utilized to deal with the

educed signal stability at non-ultrahigh field strength include acquisi-

ions with long TRs ( Koopmans et al., 2010 ), use of specialized coils with

mproved SNR around a region of interest ( Ress et al., 2007 ; Wu et al.,

018 ), and use of long scan durations ( Puckett et al., 2016 ). The benefit

f NORDIC will depend on the degree to which thermal noise is already

uppressed by such other means. For example, our results suggest that at

he ROI sizes used here, NORDIC is beneficiary in terms of denoising pro-

les and boosting sensitivity as considerable thermal noise remain after

veraging across voxels and trials (see Fig. 3 , Figs. S5 and S6). It will be

f interest in future studies to further test how the effect of NORDIC on,

.g., laminar profiles, is altered for larger ROIs, more trials, etc. Notably,

ven in cases where physiological noise becomes dominant due to av-

raging, the higher single voxel tSNR afforded by NORDIC may still be

eneficiary, e.g., for improving microvascular weighting with phase re-

ression (see Discussion Section 4.2 ). In relation to this, exciting results

rom two recent conference abstracts by Huber and colleagues indicate

hat 3T laminar fMRI signals with excellent spatial specificity can be ob-

ained with CBV-weighted VASO albeit with a tradeoff of reduced CNR

 Huber et al., 2021a ; Huber et al., 2021b ). 

Based on the above, we believe the present results add to the contri-

utions of previous 3T laminar fMRI studies, by showing that with the

mplementation of NORDIC, reliable submillimeter activation maps can

e obtained with high statistical efficiency without the need for long

can durations, extensive averaging, specialized hardware etc. 

.5. Choice of NORDIC parameter 

Changing the FE argument to 1.15 (default = 1) in NORDIC, as done

ere, effectively increases the number of removed time series compo-

ents (see Methods Section 2.4.1 ). This leads to a dramatic increase in

SNR, but does come with the risk of removing signals of interest or alter-

ng temporal correlations. For the present setup, additionally removed

omponents appeared to be dominated by thermal noise as assessed by

emporal correlation matrices and Durbin-Watson statistics (Fig. S2).

he periodogram of the difference time series (real part of noNORDIC

inus NORDIC complex time series) was flat across the frequency range

s expected for thermal noise, but it did contain a dip at the task fre-

uency (Fig. S6). This may suggest that some signal containing com-

onents were removed, which is supported by an observed tendency

owards a reduction in the response magnitude of group-averaged layer

rofiles after denoising (Fig. S3). However, in our case, the effect on

esponse magnitude appears to be non-meaningful compared with er-

or associated with estimation of group-mean responses (Fig. S3). For

hese reasons, and given the CNR dependency related to the effective-

ess of phase regression, we found it optimal to adjust this NORDIC

arameter in the present case. However, the magnitude of the effect

ikely depends on CNR-related experimental settings, such as sequence,

cquisition parameters, field strength, whether the paradigm is block

esigned versus event related, etc. Alteration of the parameter should

hus be done with care and might not even be necessary considering that

he average tSNR across sessions and subjects was 22.89 ± 2.74 when
11 
ORDIC was applied with default settings (Fig. S2). Further testing of

ow well NORDIC removes noise and leaves the signal and its temporal

tructure intact across different CNR levels, input parameters, experi-

ental settings etc. is required, ideally through simulation studies with

nown ground truths. 

.6. Limitations and future work 

We opted to prioritize multiple test-retest scans on the same sub-

ects to examine reliability of the current 3T setup. However, we ac-

nowledge that the small sample size of only 5 subjects and 20 total

essions precludes rigorous statistical analysis and the reported reliabil-

ty measures, as well as the comparison with such estimates from, e.g.,

uber et al. (2018) which were also based on small samples, should be

nterpreted in that light. Future test-retest studies with larger sample

izes would thus be beneficial to further test our suggestion that layer-

ependent activation can be reliably measured at 3T. Such studies are

o our knowledge currently lacking in the field as a whole, including

ltrahigh field, and would be valuable as the validity of any method

ltimately depends on its reliability. 

Our results support a reduced macrovascular influence through

hase regression, i.e., we found a reduced bias of laminar profiles to-

ards CSF and activation maps were associated with suppressed acti-

ation of voxels likely to contain large vessels. We take this as one line

f evidence for increased microvascular weighting. A limitation in our

ssessment of the method, however, is that our experimental settings do

ot allow for quantification of its effect on the functional point spread

unction ( Engel et al., 1997 ) which is a critical measure for high resolu-

ion fMRI. Further studies are thus required for such an evaluation, for

xample using visual paradigms as outlined previously (see for exam-

le, Chaimow et al. 2018 , Fracasso et al. 2021 , Shmuel et al. 2007 ).

oreover, despite phase regression improvements, the 3T GE-BOLD

etup presented here is still associated with macrovascular contamina-

ion which is also true for GE-BOLD at higher field strengths. Given

hat every laminar fMRI study has vastly different requirements regard-

ng sensitivity, spatial specificity, temporal resolution etc., future work

t 3T could ideally test alternative sequences known to excel in areas

here GE-BOLD is challenged. An example of a candidate sequence is

S-SI-VASO which already showed great promise at 3T ( Huber et al.,

021a ; Huber et al., 2021b ) and might be desired over GE-BOLD when

patial specificity is prioritized over sensitivity. The focus could, along

his line, be directed towards alternative postprocessing methods for de-

eining, with TDM ( Kay et al., 2020 ) being an exciting suitor. 

The flip angle of 45 degrees used for functional acquisitions was not

ptimized for sensitivity, i.e., it was roughly twice the size of the Ernst

ngle (as pointed out by one of our reviewers). This means that re-

orted measures of tSNR, stability across profiles, t-scores etc. might be

ower than what could be obtained using the Ernst Angle. Conversely,

he larger flip angle might have had a beneficiary effect in terms of sup-

ressing CSF signal and thus reducing superficial bias ( Kashyap et al.,

020 ). Future studies are needed to assess how sensitivity and macrovas-

ular influence are modified by an altered flip angle. 

Finally, it should be mentioned that certain compromises were nec-

ssary in order to achieve submillimeter resolution functional images

ith a reasonable temporal resolution: (1) The FOV was small (26 axial

lices of 0.82 mm thickness) which in some cases led to fold-over arti-

acts visible in the magnitude images. Although this did not seem to have

 big effect on the time series data in the present study, it should be of

riority to mitigate the artifact by making sure the imaging slab extends

utside the brain which comes at the cost of reduced brain coverage. Al-

ernatively, the FOV can be increased in a tradeoff with longer TRs; (2)

artial Fourier reconstruction was employed for faster coverage of K-

pace but comes with a reduction in the effective spatial resolution and

t might introduce image artifacts in locations of high frequency phase

hanges ( Haacke et al., 1991 ). Partial Fourier was implemented with

he zero-filling approach in line with previous studies using NORDIC
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 Vizioli et al., 2021 ) and phase-regression ( Stanley et al., 2020 ). More

dvanced methods such as POCS ( Haacke et al., 1991 ) might be benefi-

iary in order to minimize spatial blurring. Alternatively, Partial Fourier

ould be omitted entirely at the cost of temporal resolution. In future

tudies, advanced parallel imaging techniques such as 3D CAIPIRINHA

cceleration and multiband excitation may be implemented to increase

he coverage and temporal resolution of submillimeter fMRI at 3T. 

. Conclusion 

We used GE-BOLD fMRI to test the feasibility of laminar fMRI at 3T

ith NORDIC and phase regression. The results suggest that SNR limi-

ations usually accompanied with submillimeter isotropic voxels at 3T

an be overcome with NORDIC denoising. As a result, layer-dependent

OLD responses could be detected reliably within and across sessions

ith high statistical efficiency. Importantly, this was achievable with

tandard MR hardware, without application of explicit spatial smooth-

ng kernels, and in a single functional run, making it highly practical. As

xpected, we observed a strong superficial bias in magnitude layer pro-

les which was substantially reduced after phase regression, although

ome macrovascular contributions remained. We believe the present 3T

esults, coupled with the vast amount of research going into improving

icrovascular weighting, will help making laminar fMRI available to a

uch wider community. 
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