91 research outputs found

    The impact of probiotic supplementation during pregnancy on DNA methylation of obesity-related genes in mothers and their children

    Get PDF
    PurposeDietary supplementation with probiotics during pregnancy has been suggested to decrease the risk for obesity in women after delivery and to minimize excessive weight gain in their children. Epigenetic DNA methylation has been proposed to impact on gene activity, thereby providing a plausible molecular mechanism for a broad range of biological processes and diseases. This pilot study aimed to evaluate whether probiotic supplementation during pregnancy could modify the DNA methylation status of the promoters of obesity and weight gain-related genes in mothers and their children.MethodsA sample of 15 pregnant women was taken from a prospective, randomized mother and infant nutrition and probiotic study. Seven women received the probiotic supplementation and eight served as controls. The women’s and their children’s DNA methylation status of obesity (623 genes) and weight gain-related (433) gene promoters were analyzed from blood samples at the mean of 9.8 months (range 6.1–12.7 months) postpartum.ResultsProbiotic supplementation led to significantly decreased levels of DNA methylation in 37 gene promoters and increased levels of DNA methylation in one gene promoter in women. In their children, 68 gene promoters were significantly affected consistently with a lower level of DNA methylation in the probiotic group.ConclusionsOn the basis of our pilot study, we suggest that probiotic supplementation during pregnancy may affect the DNA methylation status of certain promoters of obesity and weight gain-related genes both in mothers and their children, thereby providing a potential mechanism for long-lasting health effects.</div

    Karyotypically abnormal human ESCs are sensitive to HDAC inhibitors and show altered regulation of genes linked to cancers and neurological diseases

    Get PDF
    AbstractGenomic abnormalities may accumulate in human embryonic stem cells (hESCs) during in vitro maintenance. Characterization of the mechanisms enabling survival and expansion of abnormal hESCs is important due to consequences of genetic changes for the therapeutic utilization of stem cells. Furthermore, these cells provide an excellent model to study transformation in vitro. We report here that the histone deacetylase proteins, HDAC1 and HDAC2, are increased in karyotypically abnormal hESCs when compared to their normal counterparts. Importantly, similar to many cancer cell lines, we found that HDAC inhibitors repress proliferation of the karyotypically abnormal hESCs, whereas normal cells are more resistant to the treatment. The decreased proliferation correlates with downregulation of HDAC1 and HDAC2 proteins, induction of the proliferation inhibitor, cyclin-dependent kinase inhibitor 1A (CDKN1A), and altered regulation of tumor suppressor protein Retinoblastoma 1 (RB1). Through genome-wide transcriptome analysis we have identified genes with altered expression and responsiveness to HDAC inhibition in abnormal cells. Most of these genes are linked to severe developmental and neurological diseases and cancers. Our results highlight the importance of epigenetic mechanisms in the regulation of genomic stability of hESCs, and provide valuable candidates for targeted and selective growth inhibition of karyotypically abnormal cells

    LuxRep: a technical replicate-aware method for bisulfite sequencing data analysis

    Get PDF
    Background: DNA methylation is commonly measured using bisulfite sequencing (BS-seq). The quality of a BS-seq library is measured by its bisulfite conversion efficiency. Libraries with low conversion rates are typically excluded from analysis resulting in reduced coverage and increased costs.Results: We have developed a probabilistic method and software, LuxRep, that implements a general linear model and simultaneously accounts for technical replicates (libraries from the same biological sample) from different bisulfite-converted DNA libraries. Using simulations and actual DNA methylation data, we show that including technical replicates with low bisulfite conversion rates generates more accurate estimates of methylation levels and differentially methylated sites. Moreover, using variational inference speeds up computation time necessary for whole genome analysis.Conclusions: In this work we show that taking into account technical replicates (i.e. libraries) of BS-seq data of varying bisulfite conversion rates, with their corresponding experimental parameters, improves methylation level estimation and differential methylation detection.</p

    Analysis of H3K4me3 and H3K27me3 bivalent promotors in HER2+ breast cancer cell lines reveals variations depending on estrogen receptor status and significantly correlates with gene expression

    Get PDF
    Background: The role of histone modifications is poorly characterized in breast cancer, especially within the major subtypes. While epigenetic modifications may enhance the adaptability of a cell to both therapy and the surrounding environment, the mechanisms by which this is accomplished remains unclear. In this study we focus on the HER2 subtype and investigate two histone trimethylations that occur on the histone 3; the trimethylation located at lysine 4 (H3K4me3) found in active promoters and the trimethylation located at lysine 27 (H3K27me3) that correlates with gene repression. A bivalency state is the result of the co-presence of these two marks at the same promoter.Methods: In this study we investigated the relationship between these histone modifications in promoter regions and their proximal gene expression in HER2+ breast cancer cell lines. In addition, we assessed these patterns with respect to the presence or absence of the estrogen receptor (ER). To do this, we utilized ChIP-seq and matching RNA-seq from publicly available data for the AU565, SKBR3, MB361 and UACC812 cell lines. In order to visualize these relationships, we used KEGG pathway enrichment analysis, and Kaplan-Meyer plots.Results: We found that the correlation between the three types of promoter trimethylation statuses (H3K4me3, H3K27me3 or both) and the expression of the proximal genes was highly significant overall, while roughly a third of all genes are regulated by this phenomenon. We also show that there are several pathways related to cancer progression and invasion that are associated with the bivalent status of the gene promoters, and that there are specific differences between ER+ and ER- HER2+ breast cancer cell lines. These specific differences that are differentially trimethylated are also shown to be differentially expressed in patient samples. One of these genes, HIF1AN, significantly correlates with patient outcome.Conclusions: This study highlights the importance of looking at epigenetic markings at a subtype specific level by characterizing the relationship between the bivalent promoters and gene expression. This provides a deeper insight into a mechanism that could lead to future targets for treatment and prognosis, along with oncogenesis and response to therapy of HER2+ breast cancer patients.</p

    Decorin Expression and Oncosuppression in Human Embryonic Carcinomas

    Get PDF
    Human embryonic stem cells in culture can transform into malignant, cancer-like cells exhibiting lesser differentiation. After transplantation, these transformed cells can form highly malignant germ cell tumors. In humans, germ cell tumors often appear at gonadal sites, like in the testis. In this study, we examined the expression of small leucine rich proteoglycans in normal and karyotypically abnormal human embryonic stem cells using a publicly available transcriptome data. We also examined the expression of the small leucine rich proteoglycans in healthy human testis and in different human testicular non-seminoma germ cell tumors using IST Online database. Furthermore, we localized the expression of decorin, the prototype member of the small leucine rich proteoglycans, in samples representing the above testicular tissues, using in situ hybridization and immunohistochemistry. The analysis revealed that the expression of two small leucine rich proteoglycans, namely decorin and lumican, was induced in normal but not in karyotypically abnormal human embryonic stem cells during early cell differentiation. Similarly, in IST Online database the expression of these two small leucine rich proteoglycans was markedly higher in differentiated teratoma tissue than in undifferentiated embryonal carcinoma tissue. In testicular germ cell tumors decorin expression was completely lacking in the areas of undifferentiated malignant cells. The above results collectively suggest that decorin and lumican have a role in human stem cell differentiation and testicular non-seminoma germ cell tumor formation.</p

    Epigenomic Landscapes of hESC-Derived Neural Rosettes: Modeling Neural Tube Formation and Diseases

    Get PDF
    We currently lack a comprehensive understanding of the mechanisms underlying neural tube formation and their contributions to neural tube defects (NTDs). Developing a model to study such a complex morphogenetic process, especially one that models human-specific aspects, is critical. Three-dimensional, human embryonic stem cell (hESC)-derived neural rosettes (NRs) provide a powerful resource for in vitro modeling of human neural tube formation. Epigenomic maps reveal enhancer elements unique to NRs relative to 2D systems. A master regulatory network illustrates that key NR properties are related to their epigenomic landscapes. We found that folate-associated DNA methylation changes were enriched within NR regulatory elements near genes involved in neural tube formation and metabolism. Our comprehensive regulatory maps offer insights into the mechanisms by which folate may prevent NTDs. Lastly, our distal regulatory maps provide a better understanding of the potential role of neurological-disorder-associated SNPs.</p

    Evaluation of tools for identifying large copy number variations from ultra-low-coverage whole-genome sequencing data

    Get PDF
    BackgroundDetection of copy number variations (CNVs) from high-throughput next-generation whole-genome sequencing (WGS) data has become a widely used research method during the recent years. However, only a little is known about the applicability of the developed algorithms to ultra-low-coverage (0.0005–0.8×) data that is used in various research and clinical applications, such as digital karyotyping and single-cell CNV detection.ResultHere, the performance of six popular read-depth based CNV detection algorithms (BIC-seq2, Canvas, CNVnator, FREEC, HMMcopy, and QDNAseq) was studied using ultra-low-coverage WGS data. Real-world array- and karyotyping kit-based validation were used as a benchmark in the evaluation. Additionally, ultra-low-coverage WGS data was simulated to investigate the ability of the algorithms to identify CNVs in the sex chromosomes and the theoretical minimum coverage at which these tools can accurately function. Our results suggest that while all the methods were able to detect large CNVs, many methods were susceptible to producing false positives when smaller CNVs (< 2 Mbp) were detected. There was also significant variability in their ability to identify CNVs in the sex chromosomes. Overall, BIC-seq2 was found to be the best method in terms of statistical performance. However, its significant drawback was by far the slowest runtime among the methods (> 3 h) compared with FREEC (~ 3 min), which we considered the second-best method.ConclusionsOur comparative analysis demonstrates that CNV detection from ultra-low-coverage WGS data can be a highly accurate method for the detection of large copy number variations when their length is in millions of base pairs. These findings facilitate applications that utilize ultra-low-coverage CNV detection.</div

    Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity

    Get PDF
    Background: Although genome-wide association studies (GWAS) have identified hundreds of variants associated with a risk for autoimmune and immune-related disorders (AID), our understanding of the disease mechanisms is still limited. In particular, more than 90% of the risk variants lie in non-coding regions, and almost 10% of these map to long non-coding RNA transcripts (lncRNAs). lncRNAs are known to show more cell-type specificity than protein-coding genes. Methods: We aimed to characterize lncRNAs and protein-coding genes located in loci associated with nine AIDs which have been well-defined by Immunochip analysis and by transcriptome analysis across seven populations of peripheral blood leukocytes (granulocytes, monocytes, natural killer (NK) cells, B cells, memory T cells, naive CD4(+) and naive CD8(+) T cells) and four populations of cord blood-derived T-helper cells (precursor, primary, and polarized (Th1, Th2) T-helper cells). Results: We show that lncRNAs mapping to loci shared between AID are significantly enriched in immune cell types compared to lncRNAs from the whole genome (a <0.005). We were not able to prioritize single cell types relevant for specific diseases, but we observed five different cell types enriched (a <0.005) in five AID (NK cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, and psoriasis; memory T and CD8(+) T cells in juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis; Th0 and Th2 cells for inflammatory bowel disease, juvenile idiopathic arthritis, primary biliary cirrhosis, psoriasis, and rheumatoid arthritis). Furthermore, we show that co-expression analyses of lncRNAs and protein-coding genes can predict the signaling pathways in which these AID-associated lncRNAs are involved. Conclusions: The observed enrichment of lncRNA transcripts in AID loci implies lncRNAs play an important role in AID etiology and suggests that lncRNA genes should be studied in more detail to interpret GWAS findings correctly. The co-expression results strongly support a model in which the lncRNA and protein-coding genes function together in the same pathways
    • …
    corecore