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Abstract 

Human embryonic stem cells in culture can transform into malignant, cancer-like cells exhibiting lesser 

differentiation. After transplantation, these transformed cells can form highly malignant germ cell tumors. In 

humans, germ cell tumors often appear at gonadal sites, like in the testis. In this study, we examined the expression 

of small leucine rich proteoglycans in normal and karyotypically abnormal human embryonic stem cells using a 

publicly available transcriptome data. We also examined the expression of the small leucine rich proteoglycans in 

healthy human testis and in different human testicular non-seminoma germ cell tumors using IST Online database. 

Furthermore, we localized the expression of decorin, the prototype member of the small leucine rich proteoglycans, 

in samples representing the above testicular tissues, using in situ hybridization and immunohistochemistry.  The 

analysis revealed that the expression of two small leucine rich proteoglycans, namely decorin and lumican, was 

induced in normal but not in karyotypically abnormal human embryonic stem cells during early cell differentiation. 

Similarly, in IST Online database the expression of these two small leucine rich proteoglycans was markedly higher 

in differentiated teratoma tissue than in undifferentiated embryonal carcinoma tissue.  In testicular germ cell tumors 

decorin expression was completely lacking in the areas of undifferentiated malignant cells. The above results 

collectively suggest that decorin and lumican have a role in human stem cell differentiation and testicular non-

seminoma germ cell tumor formation. 
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1. Introduction 

Human embryonic stem cells (hESCs) possess unique properties, including the maintenance of pluripotency and the 

capability to be propagated indefinitely under certain in vitro conditions [1, 2]. However, during culturing these cells 

can accumulate genomic alterations and epigenomic changes that cause them to develop towards cancer-like cell 

types [3, 4]. After transplantation, these transformed cells can form highly malignant germ cell tumors (GCTs) [5, 

6]. In humans, GCTs often appear at gonadal sites, e.g. in the testis [7], and testicular GCTs represent the most 

common cancer in young men [8]. Although originating from the same cellular precursor, GTCs can be divided into 

seminomas and non-seminomas which are categorized as distinct entities [9]. Cells of non-seminomas exhibit 

features of pluri- to totipotency, and are thus regarded as malignant embryonic stem cells, while seminoma forming 

cells have more limited potency to differentiate [10]. Very little is known about the microenvironment of non-

seminoma GCTs and the role of different stromal factors in the initiation and progression of germ cell tumorigenesis 

[11, 12]. Extracellular proteoglycans (PGs) are key molecules in mediating signals from the ECM into the cells [13, 

14, 15]. From these, the prototype of the small leucine-rich PGs (SLRPs), decorin, has gained the most interest in 

the regulation of cell differentiation and tumorigenesis [16-23]. 

 

Decorin is composed of about a 42 kDa core glycoprotein with one glycosaminoglycan (GAG) side chain of either 

dermatan sulfate or chondroitin sulfate. Its expression was shown to be induced in normal hESCs during their early 

differentiation into embryonic bodies (EBs) [18, 24]. On the other hand, decorin expression has been shown to be 

down-regulated in malignant cells as seen in murine teratocarcinoma cells compared with healthy cells [25]. Also, 

the intestinal tumor formation was shown to be associated with decorin deficiency in Dcn mouse model [26]. In the 

present study, we first analyzed the expression of the SLRPs in normal and karyotypically abnormal hESCs during 

early cell differentiation in vitro, and in different human testicular non-seminoma GCTs in vivo, using publicly 

available databases. Next, we focused on decorin, the prototype of the SLRPs, and localized its expression in healthy 

human testis and in various human testicular GCTs. 

 

2. Materials and methods 

2.1 Data analysis of SLRP gene expression in normal and karyotypically abnormal hESCs 

Gene expression pattern of the SLRP family members (Table 1) was analyzed in normal and culture-adapted hESCs 

with abnormal karyotype using the publicly available transcriptome data by Enver et al. [3]. This dataset profiles 

gene expression of normal (early passage) and culture-adapted (late passage) sublines of a single hESC line, 

reflecting the progressive adaptation of the cells caused by spontaneous differentiation in response to in vitro culture 

conditions. Cells were sorted for SSEA, a globoseries glycolipid antigen. Specifically, SSEA+ cells represented 
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pluripotent stem cells, and SSEA- cells have already exited this compartment, but retain multilineage differentiation 

potential. The expression of POU5F1 (POU domain class 5 transcription factor 1) was used as an indicator of 

cellular differentiation. 

Class I Class II Class III Class IV Class V 

Decorin, DCN 

Fibromodulin, 

FMOD Epiphycan, EPYC 

Chondroadherin, 

CHAD Podocan, PODN 

Biglycan, BGN Lumican, LUM Optican, OPTC Nyctalopin, NYX 

Podocan-like protein, 

PODNL1 

Asporin, ASPN PRELP 

Osteoglycin, 

OGN Tsukushi, TSKU - 

ECM2 Keratocan, KERA - - - 

ECMX Osteoadherin, OMD - - - 

 

Table 1: List of the screened SLRP genes in differentiating hESCs and in IST Online Databank. 

 

2.2 IST Online database analysis of SLRP gene expression in healthy testis and different testicular GCTs 

IST Online (http://ist.medisapiens.com/) is the largest integrated and annotated human gene expression data source 

in the world. In this study, the database was used to compare relative gene expression of the SLRP family members 

(Table 1) in healthy testis tissue and different testicular non-seminoma GCTs, namely teratoma and embryonal 

carcinoma. 

  

2.3 Human testicular tissue samples 

Human testicular samples included 1 healthy testis tissue and 9 testicular non-seminoma GCTs (6 teratomas, 1 

embryonal carcinoma, and 2 mixed GCTs). Teratomas included 1 benign mature teratoma, and 5 malignant 

teratomas. Healthy testis tissue was derived from orchiectomy of both testes due to prostate cancer. All samples 

were obtained from the archives of Turku University Hospital, Department of Pathology and Forensic Medicine, 

Turku, Finland. This study followed the Declaration of Helsinki, and sample collection and study protocol were 

approved by the National Supervisory Authority for Welfare and Health (Dnr_7324/05.01.00.06/2011). The samples 

were fixed at 10% neutral-buffered formalin, embedded in paraffin and cut into 5 µm consecutive sections. Sections 

were used for hematoxylin and eosin (HE) staining, immunohistochemistry (IHC), and in situ hybridization (ISH). 

 

2.4 Immunohistochemistry 

Three different ready-to-use mouse monoclonal antibodies from Ventana Medical Systems/Roche Diagnostics were 

used: CD30 (Ber-2), CkPan (AE1/AE3/PCK26), and PLAP (NB10) with BenchMark XT immunostainer and 

ultraVIEW Universal DAB Detection Kit (Ventana/Roche, Tucson, Arizona, USA). The IHC analyses for decorin 

were performed with a rabbit polyclonal antibody (H-80, Santa Cruz Inc., Santa Cruz, CA, dilution 1:400) as 

previously described. IHC analyses were performed in the Department of Pathology, and Medical Biochemistry and 
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Genetics. All tissue sections were scanned with Pannoramic Digital Slide scanner (The Pannoramic 250 Flash, 

3DHISTECH Ltd., Hungary). Digital images were viewed with Pannoramic Viewer (3DHISTECH). 

 

2.5 In situ hybridization for decorin 

ISH for decorin was performed on all tissue samples by probing the samples with human decorin antisense and 

sense single-stranded RNA riboprobes as previously described in detail. ISH analyses were performed in the 

Department Medical Biochemistry and Genetics. Similarly to the IHC images, the Pannoramic Digital Slide scanner 

(3DHISTECH) and Pannoramic Viewer (3DHISTECH) were used to view the images. 

 

3. Results 

3.1 Expression of SLRPs in normal and karyotypically abnormal hESCs during early cell differentiation 

Gene expression pattern of the SLRPs in normal hESCs, compared with culture-adapted hESCs with karyotypic 

abnormalities, during early cell differentiation was analyzed using the publicly available transcriptome data by 

Enver et al. [3]. The analysis revealed that in normal hESCs, the expression of two SLRPs, namely decorin (Figure 

1) and lumican (data not shown), was markedly increased during cell differentiation into EBs. In contrast, in 

abnormal hESCs, no similar increase in either decorin or lumican expression was detected during the formation of 

early EBs. 

 

Figure 1: The expression of decorin during early differentiation of hESCs. Analysis was performed using the 

publicly available transcriptome data by Enver et al. [3]. In the figure there are average normalized gene expression 

levels of decorin (DCN) and pluripotent stem cell marker POU5F1 in karyotypically NORMAL or ABNORMAL 

undifferentiated hESCc (SSEA3+), in early spontaneously differentiated hESCs (SSEA3-) and in late embryonic 

body (EB). The measurements are from three biological replicates and capped bars on the top of the columns 

indicate standard deviations of the results. POUSF1, POU domain class 5 transcription factor 1; SSEA, stage-

spesific embryonic antigen. 
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3.2 Relative gene expression of SLRPs in healthy human testis and in different human testicular non-

seminoma GCTs 

Next the relative gene expressions of the SLRPs (See material and methods, Table 1) were analyzed using IST 

Online databank (http://ist.medisapiens.com/). The analysis revealed that the relative expression of most SLRPs, was 

higher in teratoma samples than in embryonal carcinoma (data not shown). Representative box plot image of the 

gene expression of the prototype member of the SLRPs, decorin, is shown in Figure 2. As an exception to other 

SLRPs, the expression of nyctalopin, opticin and podocan-like protein 1, was on similar level in teratoma tissue 

compared to embryonal carcinoma (data not shown). Gene expression of decorin in healthy testis is included in 

Figure 2 to indicate that decorin is expressed also in differentiated human testicular tissue. 

 

 

Figure 2: Relative gene expression of decorin in healthy human testis, teratomas and embryonal carcinomas. 

Analyses are based on IST Online database. Note that decorin expression is at the highest in teratoma tissue 

samples. The continuous lines in the box plot images represent the median expression level of decorin in different 

tissue samples and capped bars in the box blot images indicate standard deviations of the results included in the 

databank. 

 

3.3 Localization of decorin expression in healthy human testis and in different human testicular non-

seminoma GCTs 

Decorin localization in different testicular tissues was performed using ISH and IHC. According to ISH for decorin, 

in healthy adult human testis, decorin mRNA expression was detected in spindle-like peritubular myoid cells 

surrounding seminiferous tubules, and in Leydig cells residing in the interstitium between the tubules (Figure 3). 

Also, individual smooth muscle cells in the vascular wall of small arteries were positive for decorin mRNA 

expression. In contrast, germ cells as well as Sertoli cells inside the tubules were negative for decorin mRNA. This 

was also true for vascular endothelial cells within the testis. The results of the IHC analysis for decorin were similar 

to those of ISH mentioned above. In healthy testis, positive decorin immunoreactivity was detected in peritubular 

myoid cells, Leydig cells and the wall of small arteries, while germ cells and Sertoli cells were negative for decorin 

(Figure 3 C-D). 
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Figure 3: A representative tissue sample of a healthy adult human testis. (A) HE staining of testis and epididymis. 

Images B-D are magnified views from the marked testis area in image A; (B) HE staining; (C) ISH for decorin; (D) 

IHC for decorin. Positive DIG-reaction in ISH can be seen in purple and positive immunoreactivity in brown. 

Arrows point to decorin positive peritubular myoid cell (MC), Leydig cell (LC) residing in the interstitium between 

the tubules, and smooth muscle cell (SMC) in the vascular wall of a small artery. Scale bar in image A=2 mm, and 

in B-D=200 µm. 

 

ISH further revealed that in the tissue sample representing mature differentiated teratoma, decorin mRNA was 

widely detected in stromal cells inside the teratoma tissue (Figure 4). However, epithelial cells, fat and glial tissues 

as well as endothelial cells were negative for decorin mRNA. Regarding the IHC, positive immunoreactivity for 

decorin was seen widely within the tumor area (Figure 4D). 
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Figure 4: Representative tissue sample of a benign embryonal testicular teratoma. (A) HE staining. Images B-D are 

magnified views from the marked area in image A; (B) HE staining; (C) ISH for decorin; (D) IHC for decorin. 

Positive DIG-reaction in ISH can be seen in purple and positive immunoreactivity in brown, respectively. Arrows in 

image C indicate decorin expressing stromal cells. Arrows in image D point to decorin negative epithelial layer. 

Note that decorin expression and immunoreactivity are widely detected in the teratoma sample. Scale bar in A=2 

mm and B-D=200 µm. 

 

Figure 5: Representative tissue sample of a malignant testicular teratoma. (A) HE staining. Images B-E are 

magnified views from the marked area in image A., and they show examples of benign (B-C) and malignant areas 
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(D-E) inside the tumor tissue. (B) and (D) are HE staining; (C) and (E) are IHC for decorin. Positive 

immunoreactivity can be seen in brown. Note that decorin immunoreactivity is detected only in specific areas of 

differentiated, benign tumor, in this case surrounding the cartilage tissue. Undifferentiated teratoma tissue does not 

express decorin. Asterisks in images B-C indicate differentiated cartilage tissue, and arrows in image C point out 

individual decorin expressing benign cells surrounding the cartilage. Scale bar in image A=5 mm, in B-E=50 µm.  

 

In malignant teratomas, decorin mRNA was present only in specific areas of benign tumor, e.g. in the surrounding 

islands of differentiated cartilage tissue (Figure 5B-C). Decorin expression was not detected in the areas of 

undifferentiated malignant tumor tissue exhibiting blastic and mitotic cellular phenotypes, with necrosis (Figure 5D-

E). Similarly, decorin immunoreactivity was detected only in areas of differentiated benign tumor, e.g. cartilage 

tissue, whereas undifferentiated teratoma tissue did not express decorin (Figure 5C and E). 

 

Similarly, in tissue samples representing embryonal carcinoma (Figure 6) and mixed GCT (data not shown) decorin 

mRNA was completely lacking in the malignant tissue areas. Identical to the ISH, malignant cells were devoid of 

decorin immunoreactivity in both embryonal carcinoma (Figure 6F) and mixed GCTs (data not shown). 

 

 

 

Figure 6: Representative tissue sample of a malignant testicular embryonal carcinoma. (A) HE staining; (B) IHC for 

PLAP; (C) IHC for CD 30; (D) IHC for CkPan; (E) ISH for decorin; (F) IHC for decorin. Positive DIG-reaction in 

ISH can be seen in purple and positive immunoreactivity in brown, respectively. Arrows in images E and F point to 

the border of the carcinoma tissue and asterisks mark the area of the carcinoma. Note that malignant cells are totally 

negative for decorin expression. Scale bar in A 2 mm and B-F=200 µm. 
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4. Discussion 

Our data analysis revealed that the expression of decorin and lumican was associated with the differentiation of 

normal hESCs, i.e., the expression level of these two SLRPs increased significantly during the development of late 

EBs. No similar increase in their expression was seen during the development of EBs in karyotypically abnormal 

hESC cultures. Previously, both decorin and lumican have been identified among the gene products expressed in 

differentiated, normal hESCs [18, 24], but the expression profile of these PGs in karyotypically abnormal hESCs 

remained unknown. During normal physiological cell differentiation, decorin expression was suggested to be 

positively involved in various processes including gonad differentiation [27], myogenesis [28, 29], chondrogenic 

differentiation [30], and intestinal cell maturation [26]. Regarding lumican, its expression was shown to be related to 

the differentiation of myofibroblasts [31] and fibrocytes [32]. 

 

The expression of the SLRPs were analyzed using IST Online database (http://ist.medisapiens.com/) where the 

relative gene expression of each molecule was compared between differentiated teratoma tissue and undifferentiated 

carcinoma tissue of testicular origin. The results showed that the relative gene expression of most SLRPs was 

markedly upregulated in teratoma samples, compared with embryonal carcinomas. Gonadal teratomas such as pre-

pubertal testicular teratomas are considered to be derived from benign, non-transformed germ cells, the so-called 

primordial germ cells [33]. However, when teratomas develop in the post-pubertal testis they are usually derived 

from both normal germ cells and carcinoma in situ cells [34]. Nevertheless, pre-pubertal teratomas can be 

morphologically similar to post-pubertal ones [7]. This emphasizes the importance of identifying different molecular 

and cellular factors in the pericellular matrix of GCTs. In the present study, we have shown that the expression of 

specific ECM macromolecules, particularly decorin, is involved in germ cell derived tumorigenesis. 

 

Additionally, we localized decorin mRNA and molecule in different human testicular GCT tissue samples using ISH 

and IHC, and found that its expression takes place only in the normal connective tissue, and is completely lacking in 

the areas of malignant cells. Previously, decorin expression in human testis has been located in the dispersed 

interstitial fibroblastic cells, and in the perivascular cells of small arteries and capillaries, whereas germ cells and 

Sertoli cells have been shown to be negative for decorin expression [35, 36]. According to the Human Protein Atlas 

web portal (http://www.proteinatlas.org), decorin immunostaining in healthy testis has also been shown to be 

expressed in low levels in Leydig cells [37-38]. These results are in accordance with our present study. Interestingly, 

Leydig cells have been shown to originate from both vascular smooth muscle cells and pericytes [39-40], as well as 

from testicular myoid cells [41]. In our study, individual cells representing all the aforementioned cell types were 

found to be decorin positive. Thus, decorin may be involved in the differentiation of Leydig cells. 

 

Because benign teratoma represents a differentiated tumor in comparison to undifferentiated malignant teratomas 

and embryonal carcinomas, the observed lack of decorin in malignant tumors may in part be involved in the 

progression of tumorigenesis in human GCTs via multiple actions. Decorin is able, among other functions, to evoke 

cell cycle arrest, apoptosis, and antiangiogenic programs [22, 42, 43, 44, 45]. Furthermore, in breast carcinoma cells, 

decorin has been demonstrated to induce mitophagy [46] which is known to play an important role in the 
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maintenance of cellular homeostasis. Defects in mitophagy promote tumorigenesis [47, 48]. We have previously 

shown that cancer cells of epithelial or mesenchymal origin are not able to express decorin [49, 50, 51]. To the best 

of the authors’ knowledge, decorin expression has not been explored before in human GCTs. 

 

In summary, the SLRPs are differentially expressed in hESCs during their early differentiation in vitro, and in 

various testicular GCTs ex vivo. In particular, decorin expression is induced in normal, but not in karyotypically 

abnormal hESCs during their differentiation in culture. In testicular non-seminoma GCTs, decorin expression is 

completely lacking in the areas of malignant cells. Our results suggest that the SLRPs, especially decorin, play a role 

in the differentiation process of embryonal cells, and in the development of testicular GCTs in human. 
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