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Analysis of H3K4me3 and H3K27me3
bivalent promotors in HER2+ breast cancer
cell lines reveals variations depending on
estrogen receptor status and significantly
correlates with gene expression
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Abstract

Background: The role of histone modifications is poorly characterized in breast cancer, especially within the major
subtypes. While epigenetic modifications may enhance the adaptability of a cell to both therapy and the
surrounding environment, the mechanisms by which this is accomplished remains unclear. In this study we focus
on the HER2 subtype and investigate two histone trimethylations that occur on the histone 3; the trimethylation
located at lysine 4 (H3K4me3) found in active promoters and the trimethylation located at lysine 27 (H3K27me3)
that correlates with gene repression. A bivalency state is the result of the co-presence of these two marks at the
same promoter.

Methods: In this study we investigated the relationship between these histone modifications in promoter regions
and their proximal gene expression in HER2+ breast cancer cell lines. In addition, we assessed these patterns with
respect to the presence or absence of the estrogen receptor (ER). To do this, we utilized ChIP-seq and matching
RNA-seq from publicly available data for the AU565, SKBR3, MB361 and UACC812 cell lines. In order to visualize
these relationships, we used KEGG pathway enrichment analysis, and Kaplan-Meyer plots.

Results: We found that the correlation between the three types of promoter trimethylation statuses (H3K4me3,
H3K27me3 or both) and the expression of the proximal genes was highly significant overall, while roughly a third
of all genes are regulated by this phenomenon. We also show that there are several pathways related to cancer
progression and invasion that are associated with the bivalent status of the gene promoters, and that there are
specific differences between ER+ and ER- HER2+ breast cancer cell lines. These specific differences that are
differentially trimethylated are also shown to be differentially expressed in patient samples. One of these genes,
HIF1AN, significantly correlates with patient outcome.
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Conclusions: This study highlights the importance of looking at epigenetic markings at a subtype specific level by
characterizing the relationship between the bivalent promoters and gene expression. This provides a deeper insight
into a mechanism that could lead to future targets for treatment and prognosis, along with oncogenesis and
response to therapy of HER2+ breast cancer patients.

Keywords: Breast Cancer, HER2 + , Epigenetic modifications, Histone trimethylations, Bivalency, Gene expression,
ChIP-seq, GRO-seq, RNA-seq

Background
The Human Epidermal growth factor Receptor 2 (HER2)
is enriched in ~ 20%, and the Estrogen Receptor (ER) is
overexpressed in ~ 70% of all breast cancers. While both
breast cancer subtypes defined by these receptors have
been extensively characterized, the impact of ER within
the HER2 subtype remains poorly understood. Specifically,
what influence does ER overexpression have on epigenetic
patterns, such as histone modifications in HER2+ breast
cancer?
Histone proteins help define chromatin structure and

can undergo a variety of post-translational modifications,
such as acetylation, methylation, phosphorylation, and
ubiquitination. These modifications can alter the chroma-
tin folding and protein-chromatin interactions, leading to
an impact on gene expression [1]. The modifications on
the various histone residues have been implicated in cell
differentiation as a response to environmental changes [1].
Modifications to histone residues are carried out by en-
zymes such as histone deacetylases, demethylases, and
methyltransferases [2, 3]. Some histone modifications can
be mutually exclusive on a specific residue, such as acetyl-
ation and methylation [4]. Among these post-translational
modifications, histone mono- (me1), di- (me2), and tri-
methylation (me3), and the dysregulation of histone lysine
demethylases have been associated with cancer [5]. This
presents a mechanism of cell regulation that warrants
further study [1, 5].
There are two tri-methylations on histone three,

located at lysine residues four (H3K4me3) and 27
(H3K27me3), that come together to form a phenomenon
known as bivalency. H3K4me3 is a post-translational
modification that occurs at the promoter region and is
associated with the activation of nearby gene expression,
whereas H3K27me3 is enriched in the inactive gene pro-
moters [6]. Bivalent promoters are promoters where
both marks are present, and commonly occurs in stem
cells, especially embryonic stem cells. In this state the
genes are poised to become either activated or repressed
as the cell becomes more committed [6]. Previous stud-
ies have found stem cells in the tumour microenviron-
ment, referred to as cancer stem cells, and have shown
that they can impact tumour growth, invasion, and re-
sponse to therapy [7]. This has led to studies implying

that bivalency is occurring in cancer cells, and is
involved in oncogenesis [8].
While one study looked into the bivalent promoter

patterns between an ER+, normal, and embryonic stem
cell lines [8], and another study looked into the patterns
between the ER+, HER2+ and triple negative cell lines
[9], no one has looked into the HER2 subtype specific-
ally to identify the differences that the ER may bring on
HER2+ cell lines within the context of bivalency. Clinic-
ally, HER2+/ER+ tend to have a worse prognosis than
HER2+/ER- patients, therefore, in this study we aimed
to assess differences found within the HER2 subtype by
characterizing what impact the presence or absence of
the ER may have on the bivalent promoters within the
HER2+ breast cancer cell lines. To broaden our under-
standing of the bivalency phenomena, we also examined
two key pathways (HER2 and ER) which are extensively
studied and clinically relevant in breast cancer. We then
looked at the status of downstream targets from these
pathways that are indicative of pathway alteration. From
here, we bring the study back to the clinical setting by
taking identified candidate genes and characterizing their
clinical relevance by significantly segregating patient sur-
vival groups based on gene expression levels. Furthermore,
while previous studies have looked at gene expression
levels in relation to histone modifications [9, 10], we
assessed this relationship in our four HER2+ breast cancer
cell lines; two HER2+/ER+ cell lines (MB361 and
UACC815) and two HER2+/ER- cell lines (AU565 and
SKBR3). This was validated using Global Run-on sequen-
cing (GRO-seq) and allowed us to correlate our cell line
data with patient expression and clinical outcome data.
This allowed us to make more robust conclusions from
our inference of the relationship between bivalency status
and gene expression between the cell lines and breast
cancer patient data.

Methods
Public data
ChIP-seq files for the H3K4me3 and H3K27me3 histone
modifications for our 4 cell lines (AU565, MDA-MB-
361, SKBR3, and UACC812) were downloaded from
SRA, accession number GSE85158 [10]. From the same
study (GSE96867), the corresponding RNA-seq files for
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all 4 cell lines were downloaded (accession number:
GSE96860) [10]. There were two biological replicates for
each ChIP-seq condition, and four RNA-seq replicates
for each cell line. Full information about the cell line
and SRA accession numbers can be found in Supple-
mentary Table 1. Additionally, for validation we utilized
GRO-seq which can be accessed using GSE96859 [10].
RNA-seq information from patient tumours were re-
trieved from The Cancer Genome Atlas (TCGA). Only
patients from TCGA that were listed as HER2+ accord-
ing to previous studies were used (Supplementary
Table 2) [11]. Kaplan-Meyer RFS plots were made using
KM Plotter [12].

ChIP-seq workflow
Following Encode Guidelines, the subsequent workflow
was used to process the ChIP-seq files downloaded from
SRA [13, 14]. All software was run using the default set-
tings or settings as suggested within their manuals. Any
deviations will be mentioned. First, the files were con-
verted to fastq format using SRAtools (version 2.8.1)
[15] and then quality control was performed using
FASTQC [16] with trimming done using Trimmomatic
(version 0.38) [17]. Alignment was achieved using bow-
tie2 (version 2.3.2) [18, 19] to the Hg38 reference gen-
ome [20], with unaligned reads discarded. Samtools [21]
was used to remove reads with a q score of less than 20
and to sort the reads prior to marking with duplicates
using Picard (REMOVE_DUPLICATES = F, VALID-
ATION_STRINGENCY = LENIENT) [22]. Peaks were
then called using HMCan (version 1.16) [23], with the
merge distance set to 200 bp for the H3K4me3 reads
and 3000 bp for the H3K27me3 reads. The wig files gen-
erated were converted to BigWig files using WigtoBig-
Wig [24], and then were viewed using the integrative
genomics viewer from the Broad Instituted (IGV) [25].
By visualizing the outputs of HMCan on IGV, we deter-
mine which replicates should be discarded by evaluating
the fit between the peak called and the density of the
signal. The remaining replicates had their BAM files
merged using Samtools, and the peaks of the merged
files were counted using HMCan. These final files were
annotated to genes within − 2000 to 1000 base pairs (bp)
from the UCSC annotated transcription start site (TSS)
using ChIPseeker [26] and passed on for downstream
analysis.

RNA-Seq and GRO-seq workflow
Utilizing a previously published approach [27, 28], both
the RNA-seq and GRO-seq workflow was as follows,
with all software ran using the default settings or set-
tings as suggested within their manuals. The files were
downloaded from SRA and converted to fastq format
using SRAtools [15]. Then quality control was done

using FASTQC [16] and bbduk (https://jgi.doe.gov/data-
and-tools/bbtools/), with alignment to the Hg38 refer-
ence [29] genome using HiSAT2 (version 2.1.0) aligner.
The resulting gsnap.sam files where then converted to
bam files and sorted based on coordinates using Sam-
tools [21]. This was followed up with Stringtie for tran-
script assembly and BallGown to normalize and organize
the read counts in FPKM or python to create raw read
tables [28, 30].

Visualization of histone modification in relation to gene
expression
The average density of histone modification signal
around TSS was visualized according to gene expression.
Genes were separated into three categories using kmeans
clustering on the RNA-seq data: high expression,
medium expression, and low expression. Then the out-
put of HMCan was used to compute the average density
of the histone modification signal per bin (50 bp) around
the TSS (−4kB, +4kB) for the three groups of expression.

KEGG pathway analysis
To perform KEGG pathway enrichment analysis, the
package clusterprofiler [31] was used. The p-value was
adjusted using the Benjamini-Hochberg method [32],
and an adjusted p-value of 0.05 was considered signifi-
cant. The first analysis was done on genes that had
either the H3K4me3 or H3K27me3 histone modification
within − 2000 to 1000 bp from the TSS. Then the ana-
lysis was performed again but only on genes which had
both marks within the same region. Both analyses were
visualized using dot plots.

Statistical analysis
A Kruskal-Walis test followed by a post-hoc Wilcoxon
rank sum test of each possible pairwise comparisons
were performed, comparing the gene expression levels of
the three groups (H3K4me3, H3K27me3, or both) to de-
termine if the distribution between them was signifi-
cantly different. These distributions for each cell line
were then visualized using box plots with Log2(x + 1)
transformed gene expression values.
To look at the relationships on a pathway specific

level, two gene lists were obtained from the KEGG data
base, the HER (ErbB) signalling pathway (ko04012) and
the Estrogen Signalling Pathway (ko04915), and sub-
setted into their respective pathways from our dataset
[33]. From these subsets of genes, a Fisher Exact test
was used to compare the ratios of H3K4me3,
H3K27me3 or both as conditions in each pathway with
the total distribution of the three conditions in the entire
dataset, as well as comparing the proportion of differen-
tially bivalent genes found in the downstream targets to
the global distribution. A Kruskal-Wallace test followed
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by a Wilcoxon rank sum post-hoc test for each possible
pairwise comparison was also performed to compare the
mark distribution with their respective gene expression
levels within the cell lines. A student’s T-Test was used
to compare the GRO-seq expression levels of key genes
found in the HER and Estrogen signalling pathway be-
tween the ER+/HER2+ and ER−/HER2+ cell lines. The
p-values were adjusted using the Benjamini-Hochberg
[32] and those comparisons with an adjusted p-value of
less than 0.05 were considered significant.

TCGA analysis
To correlate the histone modification profiles with pa-
tient tumours, RNA-seq data was downloaded from both
TCGA. For TCGA, the package TCGAbiolinks [34] in R
was used, and only information from patients that were
HER2+ was included. Differential expression analysis
was performed using DESeq2 [35] on the gene signa-
tures that were identified as regulated by the HER2 and
ER pathways in previously published work (Supplementary
Table 3) [36].

Results
Bivalency in HER2+ cells
Our objective was to characterize the relationship be-
tween the H3K4 and H3K27 trimethylations with gene
expression to confirm that these marks retained their
previously identified impact within our cell lines. In this
instance, we considered a mark to be near the transcrip-
tion start site (TSS) if it was within − 2000 bp to 1000 bp
from the TSS. Using ChIP-seq data combined with the
RNA-seq data, we confirmed that among all the cell
lines, genes with a H3K4me3 mark near the TSS have
higher expression, those with an H3K27me3 mark have
low expression, and those with both marks have a distri-
bution of expression levels somewhere in between
(Fig. 1). A post-hoc Wilcoxson test confirms that this
trend is significant (p-value < 0.05) for all relationships
across all the cell lines. Despite this significant relation-
ship, there appears to be a substantial number of outliers
in each group.
Next, we visualized the relationship between the differ-

ent bivalent histone modifications and gene expression
by plotting peak density with respect to distance from
the TSS across three different clusters of gene expres-
sion levels (high, medium, and low) (Fig. 2). As expected,
higher peak density of the H3K4me3 near the TSS is
correlated with the high and medium gene expression
clusters, and the opposite is the case for the H3K27me3.
These plots also show that the histone modification has
to be located near or on the TSS to have the expected
impact on gene expression.

HER2+/ER+ and HER2+/ER- cell lines have different
bivalently marked pathways
Next, we assessed the differences between HER2+/ER+
and HER2+/ER- cells lines on a pathway level. Figure 3
shows the KEGG pathway enrichment analysis looking
at the distribution of both marks across enriched path-
ways. While the list of enriched pathways does not differ
between the two groups, the order of the rankings dif-
fers, suggesting that there are differences on the gene
level. Of note, we see several pathways related to cancer
progression and metastasis as well as tumour suppres-
sion being regulated by bivalency. Interestingly, the HER
signalling pathway (HER 1–4) is seen enriched in the
HER2+/ER- cell lines, but not with the HER2+/ER+ cell
lines. This demonstrates a greater reliance on the HER
pathway in the HER2+/ER- cell lines than in the
HER2+/ER+ cell lines.
We found three genes within the HER pathway (Sup-

plementary Table 4) that appear differentially marked
between HER2+/ER+ and HER2+/ER- cells lines: PAK5
(bivalent in ER- but is H3K27me3 marked in ER+),
HBEGF (H3K4me3 marked in ER- and bivalent in ER+),
and SHC4 (H3K4me3 marked in ER- and either bivalent
or H3K27me3 marked in ER+). Remarkably, both SHC4
and HBEGF are found in the Estrogen signalling path-
way (Supplementary Table 5), and the GRO-seq data
shows that are statistically differentially expressed
between the ER+/HER2+ and ER−/HER2- cell lines
(HBEGF p-value = 3.74 × 10− 2 and SHC4 p-value =
4.46 × 10− 2). This would indicate that they both have a
different role to play in each pathway, or, at the very
least, in each group. SHC4 and PAK5 have both been
studied in breast cancer, with the former being used as
one of 12 gene signatures linking molecular mechanisms
to disease prognosis [37], and the latter being associated
with invasion, metastasis, and poor outcome in several
cancers [38–40]. The corresponding Global run-on
sequencing (GRO-seq) used to validate the gene expres-
sion levels can be found in Supplementary Table 6.

Bivalency is an enriched phenomenon in the HER
signalling pathway
When we looked at bivalency in HER and ER signalling
pathways, we saw that the HER pathway is statistically
significantly different from the background pattern, indi-
cating that bivalency is an important regulatory mechan-
ism for HER signalling. However, the Estrogen signalling
pathway is trending towards being significantly different
in the HER2+/ER+ cell lines but not in the HER2+/ER-
(Table 1). This shows that the HER pathway is import-
ant in all 4 HER2+ cell lines, but the ER pathway is only
regulated differently from the background in HER2+/
ER+ cell lines.
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Differentially bivalently marked genes and pathways
identified between HER2+/ER+ and HER2+/ER- cells
Looking at the pathway level, we see that there are few
differences between the cell lines in terms of bivalency
status (Fig. 4). The pathway that really stands out as a
difference between HER2+/ER+ and HER2+/ER- is the
Neuroactive ligand-receptor interaction pathway.
Despite the fact that not many pathways that are dif-

ferentially bivalent between the ER+ and ER- cell lines,
there are several genes that are. Of the 57,865 annotated
genes (both coding and non-coding) found in the Hg38
reference genome, 19,914 were found to have one or
both marks in at least one of the four cell lines. Of this,
545 genes were shown to be bivalent in HER2+/ER- and
not in HER2+/ER+, and 466 vice versa. Additionally, it

does show that the presence of a bivalent mark is un-
common overall, suggesting that those pathways which
have a high ratio of genes with a proximal bivalent mark
are important.

HER2+ breast cancer patient gene expression patterns
correlates with HER2+ cell line bivalency data
One of the ways to assess the impact of epigenetic regu-
lation on the expression of a pathway is to evaluate the
expression of targets downstream from the pathway. A
previous study [41] generated a list of genes that directly
correlate with the activation or deactivation of several
important pathways found in breast cancer, including
the ER and HER2 pathways. For this study, we did a dif-
ferential expression analysis of these genes signatures in

Fig. 1 The bivalent promoter status correlates significantly with gene expression. The box plots visualizing the Log2(x + 1) distribution of gene
expression from the 3 bivalent promotor states; H3K4me3 marked, H3K27me3 marked, or both. The top two plots are of ER- cell lines, the bottom
two are ER+
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Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 The average density of histone modification signal around TSS according to gene expression. The visualization of the histone modification
location and gene expression correlation plots for the H3K4me3 (a) and H3K27me3 (b) marks in the 4 HER2+ breast cancer cell lines. For each
plot, the gene expression was clustered into three groups (Low, Medium and High expression) using kmeans, and each cluster was plotted
according to the average density of the peak with respect to distance from the transcription start site (TSS) for their corresponding genes

Fig. 3 KEGG pathway enrichment shows differences between ER+ and ER- HER2+ cell lines. The KEGG pathway enrichment analysis for the genes
containing the H3K4me3 (K4) or H3K27me3 (K27) histone modifications for the ER- (a) and ER+ (b) HER2+ cell lines used in this study. The
number in brackets at the bottom represents the number of individual genes with peaks located within −2000 to + 1000 bp from a TSS, the size
of the dot represents the gene ratio of unique genes found to contain a peak within that pathway, the pathways that are enriched are labeled
on the left-hand side, and the colour of the dot represents the range of adjusted p-values (p-value < 0.05)
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HER2+ patients from the Cancer Genome Atlas (TCGA)
dataset, and then correlated them with their bivalent
markings in our cell lines.
While we found 32 of these genes differentially

expressed between the HER2+/ER+ and HER2+/ER-
patients, only one is differentially marked between our
HER2+/ER+ and HER2+/ER- cell lines; Kynurenine 3-
monooxygenase (KMO) (Table 2). KMO has been pre-
viously shown to promote breast cancer progression in

triple negative breast cancer while being highly upregu-
lated in HER2+ breast cancer [42]. It is interesting that
here we show that there is differential gene expression
among those patients who are HER2+, and that differ-
ence is not only correlating with ER status, but it also
correlates with a difference in histone modification.
When we applied the same analysis for the down-

stream targets of the ER, we see a slightly different pat-
tern than what we saw in the HER2 targets (Table 3).
For one, the majority of the pathway appears to be
H3K4me3 or bivalently marked for all four cell lines, ir-
respective of ER status. This pattern is something that
we would have expected to more likely occur in our
HER2 downstream patterns, not the ER, as these are all
HER2 enriched cell lines. Even so, there are three genes
that are both differentially expressed and differentially
marked between the HER2+/ER+ and HER2+/ER- sub-
groups: estorgen receptor (ESR1), Trefoil factor 3

Table 1 Adjusted p-values for the Fisher exact test to compare
the distribution of the 3 bivalent promotor statuses (H3K4me3,
H3K27me3, or both) against the background

ER- Cell Lines ER+ Cell lines

AU565 SKBR3 MB361 UACC812

HER Pathway 5.07E-03 2.19E-03 4.22E-03 2.47E-03

Estrogen Pathway 0.53 0.46 0.09 1.76E-03

Fig. 4 Enrichment analysis of genes with both marks shows only one difference between ER+ and ER-. Dot plot of the KEGG Pathway
enrichment analysis for the genes that have both an H3K4me3 and H3K27me3 histone modification within -2000 to 1000 bp from the TSS for 4
HER2+ breast cancer cell lines. The number of genes with both modifications are located in the bottom brackets, the enriched pathways are
labeled on the left-hand side, and gene ratio and adjusted p-vales are determined by dot size and colour respectively
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(TFF3), and Hypoxia inducible factor alpha inhibitor
(HIF1AN).
While the ESR1 was expected to be differentially

expressed between ER+ and ER- subgroups, it is inter-
esting that it is bivalent in ER- and H3K4me3 marked in
ER+. This means that ESR1 is constitutively active in
ER+ cell lines while still being open to activation in ER-
cell lines. We also observed that it was bivalent in two
normal cell lines (data not shown), which raises the
question as to what came first; the histone modification
or the over expression of the ESR1. TFF3 is also

fascinating, as it has been seen with elevated levels in
the blood in metastatic breast, and shown as a pre-
disposition for invasion, and acts as a biomarker for
endocrine response [43–45]. Additionally, one study has
shown that low expression of HIF1AN led to an advan-
tage for stem cells under hypoxic conditions [46], and
another study showed that low activity of HIF1AN due
to hypoxia was associated with metastasis in ovarian
cancer through interactions with histone lysine methyl-
transferases [47]. In breast cancer, HIF1AN expression
has been shown to be elevated in metastatic cases [48].

Table 2 The significant genes from the differential expression analysis of downstream targets to the HER2 pathway, with the
trimethylation mark status shown for the four cell lines used in this study

Genes TCGA
Mean ER-

TCGA Mean ER+ Adjusted p-value AU565 SKBR3 MB361 UACC812

EGFR 4255.32 1032.16 5.14E-07 Both Both Both Both

HDAC11 1178.71 2209.11 5.14E-07 H3K4 H3K4 H3K4 H3K4

PADI2 13,566.18 3909.07 9.85E-07 H3K4 H3K4 H3K4 H3K4

MSMB 108.29 1019.47 7.81E-06 H3K4 H3K4 H3K27 NA

SPRY4 3322.68 2033.51 1.03E-05 H3K4 H3K4 H3K4 Both

PRKACB 3114.35 7224.62 3.13E-05 Both H3K4 H3K4 H3K4

C2orf54 6664.59 1740.34 8.39E-05 H3K4 H3K4 Both H3K4

COL9A2 530.53 1131.71 1.46E-04 Both Both H3K4 Both

TJP3 1814.35 2869.42 2.37E-04 H3K4 H3K4 H3K4 H3K4

DSC2 6958.56 3751.01 8.48E-04 H3K4 H3K4 H3K4 H3K4

KRT7 46,998.21 21,373.81 8.48E-04 H3K4 H3K4 H3K4 H3K4

MICALL2 798.74 1120.52 8.48E-04 Both Both Both Both

GGT1 4120.00 1856.94 1.00E-03 H3K4 NA H3K4 NA

HLA-DOB 283.85 146.84 1.00E-03 NA H3K27 H3K27 H3K27

TES 6267.21 4322.84 1.00E-3 H3K4 H3K4 H3K4 Both

GRB7 19,522.94 9486.44 1.04E-03 H3K4 H3K4 H3K4 H3K4

TMPRSS2 2215.91 1031.48 1.40E-03 H3K4 H3K4 H3K4 Both

BCL11A 431.03 161.07 1.40E-03 Both Both Both Both

KMO 2436.18 1157.30 1.40E-03 H3K4 H3K4 Both Both

CDR2L 3813.56 2289.99 1.73E-03 H3K4 H3K4 H3K4 H3K4

MACROD1 415.71 582.91 2.08E-03 H3K4 Both Both Both

STARD3 21,362.24 12,410.42 3.81E-03 H3K4 H3K4 H3K4 H3K4

HER2 302,441.26 168,929.72 5.10E-03 H3K4 H3K4 H3K4 H3K4

VLDLR 1718.06 1004.34 7.08E-03 NA NA NA NA

RNF123 1765.68 2124.94 0.01 NA NA NA NA

PKD1 3058.32 3757.13 0.02 NA NA NA H3K4

EGR1 9793.62 18,680.44 0.03 Both Both Both Both

NR1H2 2741.91 3140.22 0.03 H3K4 Both H3K4 H3K4

ST6GAL1 8994.97 5555.26 0.03 Both H3K4 Both Both

ATG2A 1652.56 2460.58 0.03 H3K4 H3K4 H3K4 H3K4

ITPKC 2043.29 2397.91 0.04 H3K4 NA NA NA

CEACAM7 182.03 97.02 0.05 NA H3K27 H3K27 NA

Both referring to having both the H3K4me3 and H3K27me3 marks
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We can also see that HIF1AN has clinical relevance as
there is significant correlation between high and low ex-
pression levels and patient outcome, in all subtypes as
well as within the HER2 subtype (Fig. 5). In both in-
stances, high expression of HIF1AN correlates with poor
clinical outcome. Additionally, the number of genes that
are differentially marked in these groups are significantly
different than what we find in the global level for both
the HER2 (p-value = 3.82 × 10− 6) and the ER (p-value =
7.3 × 10− 3) downstream targets. These results show the
importance of studying bivalency status and pathway
regulation, both on a gene level and as downstream tar-
gets, in breast cancer. Complete tables for downstream
targets of the HER2 and estrogen receptor pathways can
be found in Supplementary Table 7 and Supplementary
Table 8.

Discussion
In this study, we aimed to characterize the relationship be-
tween the bivalency marks (H3K4me3 and H3K27me3)
and gene expression, as well as how the pattern changes
in the presence or absence of the ER in HER2+ breast can-
cer. Our results show that there is a significant correlation
between the mark status, the mark location, and gene ex-
pression overall, and that there are notable differences be-
tween the two subgroups (the HER2+/ER+ and HER2+/
ER- cell lines). From here we can infer the correlation for

several of the gene signatures that we looked at in the pa-
tient data with the corresponding bivalent mark status in
our cell lines. We also show that several of the bivalent-
regulated genes do have clinical significance. Overall, the
study characterized the relationship in a way that, to the
best of our knowledge, has not be done previously in
HER2+ breast cancer data.
One of the more striking observations we made was

that at a global level, only about one third of all genes
have one or both of the bivalent marks. However, the
two key breast cancer pathways we looked at, the HER
and estrogen signalling pathways, were almost entirely
marked, and still had a significantly different distribution
from the general marking patterns. This highlights the
importance of this phenomenon in cancer generally and
HER2+ breast cancer specifically, as dysregulation of this
bivalent process would clearly affect these key breast
cancer pathways. Strikingly, we did see that the estrogen
signalling pathway was only significantly different in the
ER+ cell lines from the background, showing a differ-
ence, despite both being HER2 + .
While the estrogen signalling pathway was significantly

different from the background in terms of mark distribu-
tion for the HER2+/ER+ cell lines, the HER signalling
pathway was only shown to be significantly enriched for
the HER2+/ER- cell lines in our KEGG analysis. When
we looked at the gene level of the HER pathway, we saw

Table 3 The differential expression analysis for the genes that are downstream targets of the ER pathway with the trimethylation
mark status shown for the four cell lines used in this study

Genes TCGA Mean ER- TCGA Mean ER+ Adjusted p-value AU565 SKBR3 MB361 UACC812

ESR1 1957.85 28,587.25 4.97E-26 Both Both H3K4 H3K4

TTLL4 2292.15 1222.79 5.87E-14 H3K4 H3K4 H3K4 H3K4

CA12 6494.32 26,181.72 2.39E-11 Both H3K4 H3K4 Both

GATA3 10,042.38 30,905.96 1.78E-09 Both Both Both Both

IDE 2696.24 2470.56 5.06E-06 H3K4 H3K4 H3K4 H3K4

TIMM17B 2089.91 1922.64 7.35E-06 NA NA NA NA

RAB11A 13,538.06 12,663.28 1.68E-05 H3K4 H3K4 H3K4 H3K4

TFF3 11,984.35 16,748.75 4.28E-04 H3K27 H3K27 H3K4 H3K4

CYB561 20,940.65 17,868.85 5.41E-04 H3K4 Both H3K4 H3K4

ST3GAL6 324.15 249.91 5.54E-04 NA NA NA H3K27

FBP1 2520.97 5160.04 7.95E-04 H3K4 H3K4 H3K4 H3K4

LIN7A 116.18 352.67 7.53E-03 Both Both H3K4 Both

SOX13 4161.82 4182.33 9.74E-03 H3K4 H3K4 H3K4 H3K4

KIAA1279 2414.85 2747.07 0.01 NA NA NA NA

C10orf116 3067.85 6545.65 0.01 NA NA NA NA

TGFB3 4358.59 4501.40 0.01 H3K4 H3K4 H3K4 H3K4

HIF1AN 3677.74 4135.13 0.01 H3K4 H3K4 Both Both

ANXA9 1033.79 2243.66 0.02 H3K4 NA H3K4 H3K4

PCBP2 25,977.29 30,070.89 0.02 H3K4 H3K4 H3K4 H3K4

Both referring to having both the H3K4me3 and H3K27me3 marks
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that one of the differentially marked genes between the
two groups was HBEGF (H3K4me3 marked in ER- and
bivalent in ER+). While it has been shown to promote
metastasis and macrophage-independent invasion [49],
and act as an effective target for antibody bound nano-
particles for drug delivery in triple negative breast cancer
[50], HBEGF is interesting due to its relationship with
the Epidermal Growth Factor (EGF). HBEGF has been
previously associated with EGF receptor and HER2 and
it has a higher affinity for the EGF receptor than EGF it-
self [51]. Furthermore, we also saw that KMO both dif-
ferentially regulated and marked in our analysis that
looked at the downstream markers for the HER2 path-
way in the HER2+ TCGA patients. KMO has been
shown to have increased activity in breast cancer com-
pared to normal cells, specifically being upregulated on
the protein level in the HER2+ subtype and having ele-
vated transcription levels in the Triple Negative subtype
[52, 53]. KMO also has relatively lower levels of expres-
sion in the Luminal (ER+) subtype compared to the
aforementioned subtypes [52, 53]. Unfortunately, the re-
lationship between the ER and KMO remains uncharac-
terized and warrants further investigation as the
presence or absence of the ER seems to correlate with
KMO expression, even within the HER2 dominated
subtype.
One of the other questions raised in this study is that,

despite the strong significant correlation between mark
status and gene expression levels, we see there are

several genes that are outliers, specifically in the
H3K27me3 group. One of the possibilities is that the
H3K27me3 mark is either not on all of the locus within
the cell, or that not all of the cells in our samples have
the mark on gene all the time. While it is possible that if
this phenomenon is dynamic enough to change for a few
select genes within the cell cycle, it would seem more
likely that the locus is differentially marked, given the
gene expression is still relatively high for the cells.
While this study is not without its limitations, we were

still able to accomplish our objectives; characterizing the
phenomenon of bivalency and how it differs between
ER+ and ER- subtypes within HER2+ breast cancer. The
inclusion of gene expression data not only confirms
what has been previously studied, but it allowed us to
provide a more robust conclusion when comparing the
gene expression levels in patients and inferring their re-
lationship with the bivalency status within our cell lines.
We have clearly been able to show how strong the rela-
tionship between the mark status and gene expression
and how this affects key breast cancer pathways. Several
of the key genes we have identified have been studied
within the context of breast cancer, and here we have
put forth a method by which these key genes may be
(dys)regulated. Previous studies have repeatedly demon-
strated a correlation between gene expression and re-
sponse to therapy [54, 55] as well as suggesting that
histone modifications enable a cell to adapt to changes
in the environment [1]. Therefore, this study laid the

Fig. 5 The Kaplan-Meyer RFS survival curves for all subtypes (a) and within the HER2 subtype (b), with the median value being the cutoff
between high (red) and low (black) expression. The logrank p-values and hazard ratios can be found in the top left corner of each plot
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foundations of exploring this relationship by showing
the strong correlation between mark status and gene ex-
pression and shows that bivalency correlates with the
driving factors behind the breast cancer subtypes. This is
demonstrated in the key differences within the HER2
subtype in the presence or absence of the ER. Future
studies can aim to understand how dynamic the system
is, if there are differences in which locus are marked,
and better characterize the bivalency patterns within
specific subtypes, such as the HER2 or triple negative
subtypes. Lastly, further studies into bivalency within the
subtypes and how it regulates genes could provide new
targets for therapy, as several of the sought after and
currently targeted molecules for therapy, including EGFR,
Src, and HER4 [56–58], are all shown as bivalent in this
study. Further characterization of this phenomenon can
lead to a better understanding of how resistance to ther-
apy is acquired, and advance our depiction of oncogenesis,
particularly between the different subtypes of this family
of diseases.

Conclusions
We further characterize the bivalency phenomena by fo-
cusing on a specific breast cancer subtype, HER2, and
finding differences both on the gene pathway scale and
within the clinical environment. We do this by reaffirming
the relationship between the H3K4me3 and H3K27me3
statuses with gene expression and expanding this by
showing differences between cell lines within the HER2
subtype based on ER status. This adds to the current un-
derstanding about the bivalency phenomenon and its role
in breast cancer by showing there are differences within a
subtype which are influenced by the presence of another
receptor; in this instance the estrogen receptor is having
an impact on the HER2 subtype. The influence of biva-
lency on these two receptors was demonstrated by their
pathways being highly regulated by these histone tri-
methylations and the impact it has on the expression of
downstream targets. We also show that these differences
between the HER2+/ER+ and HER2+/ER- appear to go
beyond the cell lines and are represented in differential ex-
pression of downstream genes within patients. In these in-
stances, these differences include genes that are already
known to have a role in breast cancer. Accordingly, we
conclude that is it important to study the bivalency
phenomenon within the subtypes to identify key differ-
ences that can stratify the disease further. We also suggest
that the bivalency phenomenon should be further charac-
terized within patient samples as well as within the other
subtypes and other cancers. Doing so may help us better
stratify patients within the HER2 and other subtypes and
give us a better understanding of oncogenesis and how
the cells will respond to treatment.
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