19,516 research outputs found

    Quantum Sampling Problems, BosonSampling and Quantum Supremacy

    Full text link
    There is a large body of evidence for the potential of greater computational power using information carriers that are quantum mechanical over those governed by the laws of classical mechanics. But the question of the exact nature of the power contributed by quantum mechanics remains only partially answered. Furthermore, there exists doubt over the practicality of achieving a large enough quantum computation that definitively demonstrates quantum supremacy. Recently the study of computational problems that produce samples from probability distributions has added to both our understanding of the power of quantum algorithms and lowered the requirements for demonstration of fast quantum algorithms. The proposed quantum sampling problems do not require a quantum computer capable of universal operations and also permit physically realistic errors in their operation. This is an encouraging step towards an experimental demonstration of quantum algorithmic supremacy. In this paper, we will review sampling problems and the arguments that have been used to deduce when sampling problems are hard for classical computers to simulate. Two classes of quantum sampling problems that demonstrate the supremacy of quantum algorithms are BosonSampling and IQP Sampling. We will present the details of these classes and recent experimental progress towards demonstrating quantum supremacy in BosonSampling.Comment: Survey paper first submitted for publication in October 2016. 10 pages, 4 figures, 1 tabl

    Internal rotor friction instability

    Get PDF
    The analytical developments and experimental investigations performed in assessing the effect of internal friction on rotor systems dynamic performance are documented. Analytical component models for axial splines, Curvic splines, and interference fit joints commonly found in modern high speed turbomachinery were developed. Rotor systems operating above a bending critical speed were shown to exhibit unstable subsynchronous vibrations at the first natural frequency. The effect of speed, bearing stiffness, joint stiffness, external damping, torque, and coefficient of friction, was evaluated. Testing included material coefficient of friction evaluations, component joint quantity and form of damping determinations, and rotordynamic stability assessments. Under conditions similar to those in the SSME turbopumps, material interfaces experienced a coefficient of friction of approx. 0.2 for lubricated and 0.8 for unlubricated conditions. The damping observed in the component joints displayed nearly linear behavior with increasing amplitude. Thus, the measured damping, as a function of amplitude, is not represented by either linear or Coulomb friction damper models. Rotordynamic testing of an axial spline joint under 5000 in.-lb of static torque, demonstrated the presence of an extremely severe instability when the rotor was operated above its first flexible natural frequency. The presence of this instability was predicted by nonlinear rotordynamic time-transient analysis using the nonlinear component model developed under this program. Corresponding rotordynamic testing of a shaft with an interference fit joint demonstrated the presence of subsynchronous vibrations at the first natural frequency. While subsynchronous vibrations were observed, they were bounded and significantly lower in amplitude than the synchronous vibrations

    Coherent state LOQC gates using simplified diagonal superposition resource states

    Get PDF
    In this paper we explore the possibility of fundamental tests for coherent state optical quantum computing gates [T. C. Ralph, et. al, Phys. Rev. A \textbf{68}, 042319 (2003)] using sophisticated but not unrealistic quantum states. The major resource required in these gates are state diagonal to the basis states. We use the recent observation that a squeezed single photon state (S^(r)∣1⟩\hat{S}(r) \ket{1}) approximates well an odd superposition of coherent states (∣α⟩−∣−α⟩\ket{\alpha} - \ket{-\alpha}) to address the diagonal resource problem. The approximation only holds for relatively small α\alpha and hence these gates cannot be used in a scaleable scheme. We explore the effects on fidelities and probabilities in teleportation and a rotated Hadamard gate.Comment: 21 pages, 12 figure

    Boson Sampling from Gaussian States

    Full text link
    We pose a generalized Boson Sampling problem. Strong evidence exists that such a problem becomes intractable on a classical computer as a function of the number of Bosons. We describe a quantum optical processor that can solve this problem efficiently based on Gaussian input states, a linear optical network and non-adaptive photon counting measurements. All the elements required to build such a processor currently exist. The demonstration of such a device would provide the first empirical evidence that quantum computers can indeed outperform classical computers and could lead to applications

    A Protocol for Generating Random Elements with their Probabilities

    Full text link
    We give an AM protocol that allows the verifier to sample elements x from a probability distribution P, which is held by the prover. If the prover is honest, the verifier outputs (x, P(x)) with probability close to P(x). In case the prover is dishonest, one may hope for the following guarantee: if the verifier outputs (x, p), then the probability that the verifier outputs x is close to p. Simple examples show that this cannot be achieved. Instead, we show that the following weaker condition holds (in a well defined sense) on average: If (x, p) is output, then p is an upper bound on the probability that x is output. Our protocol yields a new transformation to turn interactive proofs where the verifier uses private random coins into proofs with public coins. The verifier has better running time compared to the well-known Goldwasser-Sipser transformation (STOC, 1986). For constant-round protocols, we only lose an arbitrarily small constant in soundness and completeness, while our public-coin verifier calls the private-coin verifier only once

    Scattering of second sound waves by quantum vorticity

    Full text link
    A new method of detection and measurement of quantum vorticity by scattering second sound off quantized vortices in superfluid Helium is suggested. Theoretical calculations of the relative amplitude of the scattered second sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are presented. The relevant estimates show that an experimental verification of the method is feasible. Moreover, it can even be used for the detection of a single quantum vortex.Comment: Latex file, 9 page

    Optical and near-infrared observations of the GRB 970616 error box

    Get PDF
    We report on near-infrared and optical observations of the GRB 970616 error box and of the X-ray sources discovered by ASCA and ROSAT in the region. No optical transient was found either within the IPN band or in the X-ray error boxes, similarly to other bursts, and we suggest that either considerable intrinsic absorption was present (like GRB 970828) or that the optical transient displayed a very fast decline (like GRB 980326 and GRB 980519).Comment: 2 pages with one encapsulated PostScript figure included. Uses Astronomy & Astrophysics LaTeX macros. Accepted for publication in Astronomy & Astrophysics Supplement Serie

    Instabilities in the dissolution of a porous matrix

    Full text link
    A reactive fluid dissolving the surrounding rock matrix can trigger an instability in the dissolution front, leading to spontaneous formation of pronounced channels or wormholes. Theoretical investigations of this instability have typically focused on a steadily propagating dissolution front that separates regions of high and low porosity. In this paper we show that this is not the only possible dissolutional instability in porous rocks; there is another instability that operates instantaneously on any initial porosity field, including an entirely uniform one. The relative importance of the two mechanisms depends on the ratio of the porosity increase to the initial porosity. We show that the "inlet" instability is likely to be important in limestone formations where the initial porosity is small and there is the possibility of a large increase in permeability. In quartz-rich sandstones, where the proportion of easily soluble material (e.g. carbonate cements) is small, the instability in the steady-state equations is dominant.Comment: to be published in Geophysical Research Letter
    • …
    corecore