8 research outputs found

    Residual strain in free-standing CdTe nanowires overgrown with HgTe

    Full text link
    We investigate the crystal properties of CdTe nanowires overgrown with HgTe. Scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) confirm, that the growth results in a high ensemble uniformity and that the individual heterostructures are single-crystalline, respectively. We use high-resolution X-ray diffraction (HRXRD) to investigate strain, caused by the small lattice mismatch between the two materials. We find that both CdTe and HgTe show changes in lattice constant compared to the respective bulk lattice constants. The measurements reveal a complex strain pattern with signatures of both uniaxial and shear strains present in the overgrown nanowires

    Topological superconductivity in a phase-controlled Josephson junction

    Get PDF
    Topological superconductors can support localized Majorana states at their boundaries(1-5). These quasi-particle excitations obey non-Abelian statistics that can be used to encode and manipulate quantum information in a topologically protected manner(6,7). Although signatures of Majorana bound states have been observed in one-dimensional systems, there is an ongoing effort to find alternative platforms that do not require fine-tuning of parameters and can be easily scaled to large numbers of states(8-21). Here we present an experimental approach towards a two-dimensional architecture of Majorana bound states. Using a Josephson junction made of a HgTe quantum well coupled to thin-film aluminium, we are able to tune the transition between a trivial and a topological superconducting state by controlling the phase difference across the junction and applying an in-plane magnetic field(22). We determine the topological state of the resulting superconductor by measuring the tunnelling conductance at the edge of the junction. At low magnetic fields, we observe a minimum in the tunnelling spectra near zero bias, consistent with a trivial superconductor. However, as the magnetic field increases, the tunnelling conductance develops a zero-bias peak, which persists over a range of phase differences that expands systematically with increasing magnetic field. Our observations are consistent with theoretical predictions for this system and with full quantum mechanical numerical simulations performed on model systems with similar dimensions and parameters. Our work establishes this system as a promising platform for realizing topological superconductivity and for creating and manipulating Majorana modes and probing topological superconducting phases in two-dimensional systems

    Approaching Quantization in Macroscopic Quantum Spin Hall Devices through Gate Training

    No full text
    Quantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors.However, the ideal quantized conductance of2e2=his only found in very short channels-in contradictionwith the expected protection against backscattering of the topological insulator state. In this Letter we showthat enhancing the band gap does not improve quantization. When we instead alter the potential landscapeby charging trap states in the gate dielectric using gate training, we approach conductance quantization formacroscopically long channels. Effectively, the scattering length increases to175μm, more than 1 order ofmagnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that thedistortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material,is the major obstacle for observing undisturbed quantum spin Hall edge channel transpor

    Approaching quantization in macroscopic quantum spin hall devices through gate training

    No full text
    Quantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors. However, the ideal quantized conductance of 2e2/h is only found in very short channels-in contradiction with the expected protection against backscattering of the topological insulator state. In this Letter we show that enhancing the band gap does not improve quantization. When we instead alter the potential landscape by charging trap states in the gate dielectric using gate training, we approach conductance quantization for macroscopically long channels. Effectively, the scattering length increases to 175 μm, more than 1 order of magnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that the distortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material, is the major obstacle for observing undisturbed quantum spin Hall edge channel transport

    Approaching quantization in macroscopic quantum spin hall devices through gate training

    Get PDF
    \u3cp\u3eQuantum spin Hall edge channels hold great promise as dissipationless one-dimensional conductors. However, the ideal quantized conductance of 2e2/h is only found in very short channels-in contradiction with the expected protection against backscattering of the topological insulator state. In this Letter we show that enhancing the band gap does not improve quantization. When we instead alter the potential landscape by charging trap states in the gate dielectric using gate training, we approach conductance quantization for macroscopically long channels. Effectively, the scattering length increases to 175 μm, more than 1 order of magnitude longer than in previous works for HgTe-based quantum wells. Our experiments show that the distortion of the potential landscape by impurities, leading to puddle formation in the narrow gap material, is the major obstacle for observing undisturbed quantum spin Hall edge channel transport.\u3c/p\u3

    Interacting topological edge channels

    No full text
    Electrical currents in a quantum spin Hall insulator are confined to the boundary of the system. The charge carriers behave as massless relativistic particles whose spin and momentum are coupled to each other. Although the helical character of those states is already established by experiments, there is an open question regarding how those edge states interact with each other when they are brought into close spatial proximity. We employ an inverted HgTe quantum well to guide edge channels from opposite sides of a device into a quasi-one-dimensional constriction. Our transport measurements show that, apart from the expected quantization in integer steps of 2e2/h, we find an additional plateau at e2/h. We combine band structure calculations and repulsive electron\u2013electron interaction effects captured within the Tomonaga\u2013Luttinger liquid model and Rashba spin\u2013orbit coupling to explain our observation in terms of the opening of a spin gap. These results may have direct implications for the study of one-dimensional helical electron quantum optics, and for understanding Majorana and para fermions
    corecore