10,442 research outputs found

    The use of Planetary Nebulae precursors in the study of Diffuse Interstellar Bands

    Get PDF
    We present the first results of a systematic search for Diffuse Interstellar Bands in a carefully selected sample of post-AGB stars observed with high resolution optical spectroscopy. These stars are shown to be ideal targets to study this old, intriguing astrophysical problem. Our results suggest that the carrier(s) of these bands may not be present in the circumstellar environments of these evolved stars. The implications of the results obtained on the identification of the still unknown carrier(s) are discussed.Comment: 4 pages, 2 figures, proceedings of the conference 'Planetary Nebulae as Astrophysical Tools', held in Gdansk, Poland (June 28 - July 2, 2005

    Spherical orbit closures in simple projective spaces and their normalizations

    Full text link
    Let G be a simply connected semisimple algebraic group over an algebraically closed field k of characteristic 0 and let V be a rational simple G-module of finite dimension. If G/H \subset P(V) is a spherical orbit and if X is its closure, then we describe the orbits of X and those of its normalization. If moreover the wonderful completion of G/H is strict, then we give necessary and sufficient combinatorial conditions so that the normalization morphism is a homeomorphism. Such conditions are trivially fulfilled if G is simply laced or if H is a symmetric subgroup.Comment: 24 pages, LaTeX. v4: Final version, to appear in Transformation Groups. Simplified some proofs and corrected minor mistakes, added references. v3: major changes due to a mistake in previous version

    Multi-wavelength study of the star-formation in the S237 H II region

    Full text link
    We present a detailed multi-wavelength study of observations from X-ray, near-infrared to centimeter wavelengths to probe the star formation processes in the S237 region. Multi-wavelength images trace an almost sphere-like shell morphology of the region, which is filled with the 0.5--2 keV X-ray emission. The region contains two distinct environments - a bell-shaped cavity-like structure containing the peak of 1.4 GHz emission at center, and elongated filamentary features without any radio detection at edges of the sphere-like shell - where {\it Herschel} clumps are detected. Using the 1.4 GHz continuum and 12^{12}CO line data, the S237 region is found to be excited by a radio spectral type of B0.5V star and is associated with an expanding H{\sc ii} region. The photoionized gas appears to be responsible for the origin of the bell-shaped structure. The majority of molecular gas is distributed toward a massive {\it Herschel} clump (Mclump_{clump} ∌\sim260 M⊙_{\odot}), which contains the filamentary features and has a noticeable velocity gradient. The photometric analysis traces the clusters of young stellar objects (YSOs) mainly toward the bell-shaped structure and the filamentary features. Considering the lower dynamical age of the H\,{\sc ii} region (i.e. 0.2-0.8 Myr), these clusters are unlikely to be formed by the expansion of the H\,{\sc ii} region. Our results also show the existence of a cluster of YSOs and a massive clump at the intersection of filamentary features, indicating that the collisions of these features may have triggered cluster formation, similar to those found in Serpens South region.Comment: 21 pages, 14 figures, 1 table, Accepted for publication in The Astrophysical Journa

    Changes in pain-related beliefs, coping, and catastrophizing predict changes in pain intensity, pain interference, and psychological functioning in individuals with myotonic muscular dystrophy and facioscapulohumeral dystrophy

    Get PDF
    The primary aim of this study was to test hypothesized associations between changes in psychological variables (i.e., pain beliefs, catastrophizing and coping strategies) and changes in pain intensity and related adjustment (i.e., pain interference and psychological functioning) in individuals with Myotonic Muscular Dystrophy (MMD) and Facioscapulohumeral Muscular Dystrophy (FSHD). Methods: A sample of 107 adults with a diagnosis of MMD or FSHD, reporting pain in the past three months, completed assessments at two time-points, separated by about 24 months. Results showed that changes in pain-related psychological variables were significantly associated with changes in psychological functioning, pain intensity and pain interference. Specifically, increases in the belief that emotion influences pain, and catastrophizing were associated with decreases in psychological functioning. Increases in the coping strategies of asking for assistance and resting, and the increases of catastrophizing were associated with increases in pain intensity. Finally, increases in pain intensity and asking for assistance were associated with increases in pain interference. Discussion: The results support the utility of the biopsychosocial model of pain for understanding pain and its impact in individuals with MMD or FSHD. These findings may inform the design and implementation of psychosocial pain treatments for people with muscular dystrophy and chronic pain

    Chaotic Waveguide-Based Resonators for Microlasers

    Full text link
    We propose the construction of highly directional emission microlasers using two-dimensional high-index semiconductor waveguides as {\it open} resonators. The prototype waveguide is formed by two collinear leads connected to a cavity of certain shape. The proposed lasing mechanism requires that the shape of the cavity yield mixed chaotic ray dynamics so as to have the appropiate (phase space) resonance islands. These islands allow, via Heisenberg's uncertainty principle, the appearance of quasi bound states (QBS) which, in turn, propitiate the lasing mechanism. The energy values of the QBS are found through the solution of the Helmholtz equation. We use classical ray dynamics to predict the direction and intensity of the lasing produced by such open resonators for typical values of the index of refraction.Comment: 5 pages, 5 figure

    On the classical-quantum correspondence for the scattering dwell time

    Full text link
    Using results from the theory of dynamical systems, we derive a general expression for the classical average scattering dwell time, tau_av. Remarkably, tau_av depends only on a ratio of phase space volumes. We further show that, for a wide class of systems, the average classical dwell time is not in correspondence with the energy average of the quantum Wigner time delay.Comment: 5 pages, 1 figur
    • 

    corecore