56 research outputs found

    Estudio de la función de las proteínas de Citrus psorosis virus y Mirafiori lettuce big-vein virus

    Get PDF
    Objetivos: 1- Determinar la localización subcelular de las proteínas de cubierta de CPsV y MiLBVV e interacciones CP-CP homólogas y heterólogas. 2- Identificar la/s proteínas virales involucradas en el mecanismo de supresión del PTGS. 3- Identificar y caracterizar cuál/es de la/s proteínas de CPsV y MiLBVV poseen la función de movimiento viral célula-a-célula. 4- Aportar evidencias que permitan conocer el mecanismo que poseen los ophiovirus MiLBVV y CPsV para el movimiento célula-a-célula.Facultad de Ciencias Exacta

    Citrus psorosis virus movement protein contains an aspartic protease required for autocleavage and the formation of tubule-like structures at plasmodesmata

    Get PDF
    Plant virus cell-to-cell movement is an essential step in viral infections. This process is facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis virus (CPsV) infection in sweet orange involves the formation of tubule-like structures within PD, suggesting that CPsV belongs to "tubuleforming" viruses that encode MPs able to assemble a hollow tubule extending between cells to allow virus movement. Consistent with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic protease motif present in its primary sequence. A single amino acid mutation in this motif abolishes MPCPsV cleavage, alters the subcellular localization of the protein, and negatively affects its activity in facilitating virus movement. The amino-terminal 34-kDa cleavage product (34KCPsV), but not the 20-kDa fragment (20KCPsV), supports virus movement. Moreover, similar to tubule-forming MPs of other viruses, MPCPsV (and also the 34KCPsV cleavage product) can homooligomerize, interact with PD-located protein 1 (PDLP1), and assemble tubule-like structures at PD by a mechanism dependent on the secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-deficient MPCPsV in trans. Altogether, these results demonstrate that CPsV movement depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-dependent tubule formation at PD. IMPORTANCE Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity within the viral movement protein (MP), which results in the production of two peptides, termed 34KCPsV and 20KCPsV, that carry the MP and viral protease activities, respectively. The underlying protease motif within the MP is also found in the MPs of other members of the Aspiviridae family, suggesting that protease-mediated protein processing represents a conserved mechanism of protein expression in this virus family. The results also demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided mechanism. Although several viruses from different genera were shown to use this mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is controlled by posttranslational protein cleavage. Moreover, given that tubule formation and virus movement could be inhibited by a mutation in the protease motif, targeting the protease activity for inactivation could represent an important approach for ophiovirus control.Fil: Robles Luna, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Peña, Eduardo José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Borniego, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Heinlein, Manfred. Université de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Garcia, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; Argentin

    Estudio de prefactibilidad para la instalación de una planta de producción de envases biodegradables a base de residuos de plátano

    Get PDF
    Este proyecto de investigación detalla la producción de envases biodegradables a base de productos naturales como lo es la cáscara de plátano con la finalidad de tener una alternativa más al uso de plásticos que en los últimos 50 años su producción ha superado en gran medida a todos los otros materiales y evitar la contaminación que produce en el medio ambiente. El público objetivo serán los restaurantes, cafeterías y servicios de alimentos comprometidos al cuidado del medio ambiente. Para el proyecto presente se toma la problemática de la contaminación del plástico en el planeta y de la búsqueda de un producto que sirva como reemplazo de las bolsas de plástico tan utilizadas en el día a día, donde la investigación de mercado de la materia prima principal será la cáscara de plátano, con mayor precisión en la demanda de plátano que hay en el Perú, en donde la producción va en alza en los últimos años. Después de tener el producto establecido, se establecerá los detalles del mismo y se analizará las 5 fuerzas de Porter que nuestro producto podría tener. Seguido a esto se plantearán los objetivos específicos y el objetivo general del proyecto y las justificaciones técnica, económica, social y ambiental que serán necesarias para el desarrollo del producto. En el siguiente capítulo, se presentará un diagrama de operaciones del producto, especificando los procesos a utilizar para el producto terminado. Los capítulos posteriores se basan en presentar la capacidad de la planta, el organigrama de la organización y los respectivos cálculos financieros, económicos y la realización del plano para determinar la viabilidad del proyecto.This project details the production of biodegradable packaging based on natural products such as banana peel in order to have one more alternative to the use of plastics and avoid the contamination that plastic bags produce in the environment. For the present project, the problem of plastic pollution on the planet and the search for a product that serves as a replacement for the plastic bags so used nowadays, where the market research of the man raw material is taken it will be the banana peel, more precisely in the demand for bananas in Peru, where production has been on the rise in recent years. After having the product established, the Details of it will be established and the 5 Porter´s forces that our product could have will be analyzed. Following this, the specific pobjetives and general objective of the Project and the technical, economic, social and environmental justifications that will be necessary for the development of the product will be raised. In the next chapter, a diagram of operations of the product will have all the detailed processes. Finally, the following chapters are based on presenting the capacity of the plant, the organization chart, the elaboration of the floor plan, the respective financial and economic calculations its evaluations to determinate the viability of the Project

    Bioinformatic and mutational analysis of ophiovirus movement proteins, belonging to the 30K superfamily

    Get PDF
    Ophioviridae is a family of segmented, negative-sense, single-stranded RNA plant viruses. We showed that their cell-to-cell movement protein (MP) is an isolated member of the 30K MP superfamily with a unique structural organization. All 30K MPs share a core domain that contains a nearly-invariant signature aspartate. We examined its role in the MP of Citrus psorosis virus (CPsV) and Mirafiori lettuce big-vein virus (MiLBVV). Alanine substitution of this aspartate prevented plasmodesmata accumulation of MPMiLBVV, while MPCPsV was not affected. The capacity of ophiovirus MPs to increase the plasmodesmata size exclusion limit and non-cell autonomous protein feature was abolished in both mutants. To investigate the role of the signature aspartate in cell-to-cell movement, we constructed a new movement-deficient Tobacco mosaic virus vector used for trans-complementation assays. We showed that both ophiovirus MP mutants lack the cell-to-cell movement capacity, confirming that this signature aspartate is essential for viral cell-to-cell movement.Instituto de Biotecnologia y Biologia Molecula

    Ophioviruses CPsV and MiLBVV movement protein is encoded in RNA 2 and interacts with the coat protein

    Get PDF
    Citrus psorosis virus (CPsV) and Mirafiori lettuce big-vein virus (MiLBVV), members of the Ophioviridae family, have segmented negative-sense single-stranded RNA genomes. To date no reports have described how ophioviruses spread within host plants and/or the proteins involved in this process. Here we show that the 54K protein of CPsV is encoded by RNA 2 and describe its subcellular distribution. Upon transient expression in Nicotiana benthamiana epidermal cells the 54K protein, and also its 54K counterpart protein of MiLBVV, localize to plasmodesmata and enhance GFP cell-to-cell diffusion between cells. Both proteins, but not the coat proteins (CP) of the respective viruses, functionally trans-complement cell-to-cell movement-defective Potato virus X (PVX) and Tobacco mosaic virus (TMV) mutants. The 54K and 54K proteins interact with the virus-specific CP in the cytoplasm, suggesting a potential role of CP in ophiovirus movement. This is the first study characterizing the movement proteins (MP) of ophioviruses.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula

    Interplay between potato virus X and RNA granules in Nicotiana benthamiana

    Get PDF
    Cytoplasmic RNA granules consist of microscopic agglomerates of mRNAs and proteins and occur when the translation is reversibly and temporally halted (stress granules, SGs) or mRNAs are targeted for decapping (processing bodies, PBs). The induction of RNA granules formation by virus infection is a common feature of mammalian cells. However, plant-virus systems still remain poorly characterized. In this work, the SG marker AtUBP1b was expressed in Nicotiana benthamiana plants to decipher how the virus infection of plant cells affects SG dynamics. We found that the hypoxia-induced SG assembly was substantially inhibited in Potato virus X (PVX)-infected cells. Furthermore, we determined that the expression of PVX movement protein TGBp1 by itself, mimics the inhibitory effect of PVX on SG formation under hypoxia. Importantly, overexpression of AtUBP1b showed inhibition of the PVX spreading, whereas the overexpression of the dominant negative AtUBP1brrm enhanced PVX spreding, indicating that AtUBP1b negatively affects PVX infection. Notably, PVX infection did not inhibit the formation of processing bodies (PBs), indicating PVX has distinct effects depending on the type of RNA granule. Our results suggest that SG inhibition could be part of the virus strategy to infect the plant.Fil: Robles Luna, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Furman, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Barbarich, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Carlotto, Nicolás. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Attorresi, Alejandra Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación en Biomedicina de Buenos Aires - Instituto Partner de la Sociedad Max Planck; ArgentinaFil: Garcia, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Kobayashi, Ken. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentin

    Identification of Mirafiori lettuce big-vein virus and Lettuce big-vein associated virus infecting Lactuca sativa with symptoms of lettuce big-vein disease in Argentina

    Get PDF
    Lettuce big-vein disease (BVD) affects all major lettuce-producing areas of the world. The causal agent is Mirafiori lettuce big-vein virus (MLBVV), an ophiovirus transmitted by the soil-borne fungus Olpidium brassicae (Lot et al., 2002). MLBVV has been detected in many different areas of the world but never in Argentina. La Plata has about 700 ha of lettuce with a production of about 13 000 tonnes, and with about 70% of the total production from Buenos Aires Province. BVD has been detected in different areas in the north and west of the La Plata horticultural green belt. Many of the plants with BVD symptoms had leaf distortions of moderate severity, which affected their commercial value.Facultad de Ciencias ExactasFacultad de Ciencias Agrarias y Forestale

    Identification of Mirafiori lettuce big-vein virus and Lettuce big-vein associated virus infecting Lactuca sativa with symptoms of lettuce big-vein disease in Argentina

    Get PDF
    Lettuce big-vein disease (BVD) affects all major lettuce-producing areas of the world. The causal agent is Mirafiori lettuce big-vein virus (MLBVV), an ophiovirus transmitted by the soil-borne fungus Olpidium brassicae (Lot et al., 2002). MLBVV has been detected in many different areas of the world but never in Argentina. La Plata has about 700 ha of lettuce with a production of about 13 000 tonnes, and with about 70% of the total production from Buenos Aires Province. BVD has been detected in different areas in the north and west of the La Plata horticultural green belt. Many of the plants with BVD symptoms had leaf distortions of moderate severity, which affected their commercial value.Facultad de Ciencias ExactasFacultad de Ciencias Agrarias y Forestale

    Bioinformatic and mutational analysis of ophiovirus movement proteins, belonging to the 30K superfamily

    Get PDF
    Ophioviridae is a family of segmented, negative-sense, single-stranded RNA plant viruses. We showed that their cell-to-cell movement protein (MP) is an isolated member of the 30K MP superfamily with a unique structural organization. All 30K MPs share a core domain that contains a nearly-invariant signature aspartate. We examined its role in the MP of Citrus psorosis virus (CPsV) and Mirafiori lettuce big-vein virus (MiLBVV). Alanine substitution of this aspartate prevented plasmodesmata accumulation of MPMiLBVV, while MPCPsV was not affected. The capacity of ophiovirus MPs to increase the plasmodesmata size exclusion limit and non-cell autonomous protein feature was abolished in both mutants. To investigate the role of the signature aspartate in cell-to-cell movement, we constructed a new movement-deficient Tobacco mosaic virus vector used for trans-complementation assays. We showed that both ophiovirus MP mutants lack the cell-to-cell movement capacity, confirming that this signature aspartate is essential for viral cell-to-cell movement.Instituto de Biotecnologia y Biologia Molecula

    Ophioviruses CPsV and MiLBVV movement protein is encoded in RNA 2 and interacts with the coat protein

    Get PDF
    Citrus psorosis virus (CPsV) and Mirafiori lettuce big-vein virus (MiLBVV), members of the Ophioviridae family, have segmented negative-sense single-stranded RNA genomes. To date no reports have described how ophioviruses spread within host plants and/or the proteins involved in this process. Here we show that the 54K protein of CPsV is encoded by RNA 2 and describe its subcellular distribution. Upon transient expression in Nicotiana benthamiana epidermal cells the 54K protein, and also its 54K counterpart protein of MiLBVV, localize to plasmodesmata and enhance GFP cell-to-cell diffusion between cells. Both proteins, but not the coat proteins (CP) of the respective viruses, functionally trans-complement cell-to-cell movement-defective Potato virus X (PVX) and Tobacco mosaic virus (TMV) mutants. The 54K and 54K proteins interact with the virus-specific CP in the cytoplasm, suggesting a potential role of CP in ophiovirus movement. This is the first study characterizing the movement proteins (MP) of ophioviruses.Facultad de Ciencias ExactasInstituto de Biotecnologia y Biologia Molecula
    corecore