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Abstract 22 

Plant virus cell-to-cell movement is an essential step in viral infections. This process is 23 

facilitated by specific virus-encoded movement proteins (MPs), which manipulate the cell 24 

wall channels between neighboring cells known as plasmodesmata (PD). Citrus psorosis 25 

virus (CPsV) infection in sweet orange involves the formation of tubule-like structures 26 

within PD, suggesting that CPsV belongs to “tubule-forming” viruses that encode MPs able 27 

to assemble a hollow tubule extending between cells to allow virus movement. Consistent 28 

with this hypothesis, we show that the MP of CPsV (MPCPsV) indeed forms tubule-like 29 

structures at PD upon transient expression in Nicotiana benthamiana leaves. Tubule 30 

formation by MPCPsV depends on its cleavage capacity, mediated by a specific aspartic 31 

protease motif present in its primary sequence. A single aminoacid mutation in this motif 32 

abolishes MPCPsV cleavage, alters the subcellular localization of the protein and negatively 33 

affects its activity in facilitating virus movement. The amino terminal 34 kDa cleavage 34 

product (34KCPsV), but not the 20 kDa fragment (20KCPsV), supports virus movement. 35 

Moreover, similar to tubule-forming MPs of other viruses, the MPCPsV (and also the 36 

34KCPsV cleavage product) can homo-oligomerize, interact with PD-Located Protein 1 37 

(PDLP1) and assemble tubule-like structures at PD by a mechanism dependent on the 38 

secretory pathway. 20KCPsV retains the protease activity and is able to cleave a cleavage-39 

deficient MPCPsV 
in trans. Altogether, these results demonstrate that CPsV movement 40 

depends on the autolytic cleavage of MPCPsV by an aspartic protease activity, which 41 

removes the 20KCPsV protease and thereby releases the 34KCPsV protein for PDLP1-42 

dependent tubule formation at PD. 43 

 44 

Importance  45 

Infection by citrus psorosis virus (CPsV) involves a self-cleaving aspartic protease activity 46 

within the viral movement protein (MP), which results in the production of two peptides 47 

termed 34KCPsV and 20KCPsV that carry the MP and viral protease activities, respectively. 48 

The underlying protease motif within the MP is also found in the MPs of other members of 49 

the Aspiviridae family suggesting that protease-mediated protein processing represents a 50 

conserved mechanism of protein expression in this virus family. The results also 51 

demonstrate that CPsV and potentially other ophioviruses move by a tubule-guided 52 
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mechanism. Although several viruses from different genera were shown to use this 53 

mechanism for cell-to-cell movement, our results also demonstrate that this mechanism is 54 

controlled by post-translational protein cleavage. Moreover, given that tubule formation 55 

and virus movement could be inhibited by a mutation in the protease motif, targeting the 56 

protease activity for inactivation could represent an important approach for ophiovirus 57 

control. 58 

  59 
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Introduction 60 

The cell-to-cell spread of virus infection generally depends on the activity of one or more 61 

virus-encoded movement proteins (MPs), which target intercellular communication 62 

channels within the plant cell walls known as plasmodesmata (PD) (1, 2). These channels 63 

provide both membrane and cytoplasmic continuity between cells and thus function as 64 

intercellular conduits for both soluble and membrane-associated compounds, ranging from 65 

small molecules such as salts, hormones and metabolites, to macromolecules, such as 66 

proteins, short and long RNAs and protein:RNA complexes (3). Structurally, PD represent 67 

unique structures, in which the plasma membrane (PM) and the endoplasmic reticulum 68 

(ER) form two concentric membrane tubules extending through the cell wall and are in 69 

close opposition to each other (ca. 10 nm) (4). The ER tubule (the ‘desmotubule’) is linked 70 

from all its surface to the PM and, potentially, to the cell wall by proteinaceous spoke-like 71 

extensions, which may represent specialized protein tethers that regulate the distance 72 

between the two membranes and, thereby, the size of the cytoplasmic annulus available for 73 

cytoplasmic transport (5). However, while this model for the regulation of the PD size 74 

exclusion limit (SEL) remains speculative, numerous studies correlated the regulation of 75 

PD function in controlling intercellular communication with the degree of callose 76 

deposition in the cell wall surrounding the PD neck regions (6-8). Whereas the synthesis 77 

and accumulation of callose in the cell wall causes the closure of the cytoplasmic 78 

compartmentby forcing the plasma membrane against the desmotubule, the degradation of 79 

callose by beta-glucanases opens this compartment for intercellular transport (5). 80 

Plant viruses exploit PD for their cell-to-cell movement by co-opting the cellular machinery 81 

of PD-mediated transport. The cell-to-cell movement strategies used by viruses have been 82 

deeply reviewed (9, 10) and classified into two general mechanisms based on the type of 83 

alteration of PD structure. Whereas the tubule-guided mechanism involves the 84 

displacement of the desmotubule by the formation of a tubule-like transport structure 85 

assembled by multimerization of viral MP and the transport whole virions through the 86 

tubule(9, 11-16), the non-tubule-guided mechanism usually occurs in the absence of virions 87 

and does not involve structural alterations within PD but rather a viral interference with the 88 

normal regulation of PD. Tobacco mosaic virus (TMV), the type virus using a non-tubule 89 

guided mechanism, moves cell-to-cell independently of the coat protein (CP) (9, 17), by 90 
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targeting viral replication complexes (VRCs) to PD with the help of myosin motor 91 

proteins(18). Moreover, this virus interferes with callose depositions at PD, thus allowing 92 

the passage of the VRCs into the adjacent cell (19). The MP of this virus interacts with the 93 

ER, microtubules and microtubule-associated proteins proposed to play a role in the 94 

formation of movement-competent VRCs (20-22). There is evidence that the viral 95 

movement process also involves the severing of actin filaments (23) and interactions of the 96 

MP with synaptotagmin A (SYTA), which is proposed to act in endosomal recycling (24) 97 

as well as a membrane tethering protein (5, 10, 25, 26). 98 

Unlike the MP of TMV and presumably the MPs of other viruses moving by the non-99 

tubule-mediated mechanism, the MPs of tubule-forming viruses interact with members of 100 

the PD-Located Protein (PDLP) family and this interaction is required for tubule assembly 101 

and the spread of infection (27, 28). PDLPs require the ER-Golgi pathway for their 102 

targeting to PD (27, 29), which may explain the observed sensitivity of tubule-formation 103 

and tubule-mediated virus movement to secretory pathway inhibitors (27, 30, 31). DNA 104 

and RNA viruses that move cell-to-cell by a tubule-guided mechanism have been found in 105 

the Caulimo- (11, 27, 32, 33), Seco- (15, 27, 34-37), Bunya- (13, 38), and Bromoviridae 106 

(39) families. 107 

Citrus psorosis virus (CPsV), the type member of the Aspiviridae family (formerly 108 

Ophioviridae), genus Ophiovirus (40, 41), is a three-partite, non-enveloped, negative-sense, 109 

single-stranded (ss) RNA virus. RNA 1 encodes a 280 kDa replicase (42) as well as a 24 110 

kDa protein that affects miRNA maturation (43) and has RNA silencing-suppressing 111 

activity (44). RNA 2 encodes a protein of 54 kDa (named hereafter MPCPsV), which 112 

displays several features of a MP (45, 46) and has RNA silencing-suppressing activity as 113 

well (44). RNA 3 encodes a CP of 48 kDa (47). In addition to CPsV, the Ophiovirus genus 114 

contains six more members, Mirafiori lettuce big-vein virus (MiLBVV), blueberry mosaic 115 

associated virus (BlMaV), lettuce ring necrosis virus (LRNV), freesia sneak virus (FSV), 116 

ranunculus white mottle virus (RWMV) and tulip mild mottle mosaic virus (TMMMV), of 117 

which the last two have not been completely sequenced and are less characterized. 118 

Here we show that CPsV induces the formation of tubular structures at PD during infection 119 

in citrus. Similar structures protruding from PD are observed by confocal laser scanning 120 

microscopy (CLSM) upon ectopic expression of MPCPsV fused to fluorescent markers. The 121 
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formation of the tubules is dependent on the proper localization of PDLP at PD. We also 122 

show that the MPCPsV is autocatalytically processed during both infection and transient 123 

expression and that a conserved aspartic protease motif within MPCPsV is responsible for 124 

this activity. By further functional characterization, we demonstrate that the autocatalytic 125 

cleavage releases an N-terminal peptide fundamental for tubule formation and a C-terminal 126 

protein fragment with viral protease activity. 127 

 128 

Results 129 

Cell walls of CPsV-infected citrus plants exhibit tubule-like structures  130 

To get insight into the cell-to-cell movement mechanism used by CPsV, we analyzed the 131 

PD structure in CPsV-infected sweet orange plants. Ultrathin sections of healthy and 132 

infected leaves harvested at similar developmental stages were sectioned and observed by 133 

Transmission electron microscopy (TEM). In contrast to healthy samples (FIG. 1Ai) the PD 134 

in the CPsV-infected sample contained a double line of electron-dense and well-organized 135 

proteinaceous material, compatible with a longitudinal sectioning through a hollow tubular 136 

structure that extended from the cell wall into the cytoplasm (FIG. 1Aii, arrow).  137 

Given the capacity of ophiovirus MPs to target PD upon transient expression in N. 138 

benthamiana leaves (46), we wanted to know whether these proteins form tubule-like 139 

structures under these conditions. Expression of MPCPsV N-terminally (FIG. 1Bi, 140 

arrowhead) and C-terminally (FIG. 1Bii, arrows) fused to fluorescent proteins (e.g. 141 

enhanced green fluorescent protein, GFP) revealed that MPCPsV indeed can form tubules; 142 

however, only the C-terminal fusion (MPCPsV:GFP) showed tubule-like structures at PD 143 

(FIG. 1Bii, arrows), whereas N-terminal fusions (GFP:MPCPsV) labeled PD without forming 144 

such structures. For cells expressing C-terminal fusion protein, the number of tubules per 145 

cell was variable and each cell showed both tubular and non-tubular MPCPsV:GFP at PD 146 

(FIG. 1Bii). These observations indicate although both orientations target PD, only C-147 

terminal fusions to GFP can form tubular structures. 148 

 149 

The MPCPsV interacts with PD-localized PDLP1 for tubule assembly 150 

Consistent with the tubule assembly from MP, the monomers of the tubule-forming MPs of 151 

caulimo- and nepoviruses showed MP-MP interaction in vivo (27). Moreover, these 152 
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proteins were shown to interact with members of the PDLP family at PD (27, 28). Amari et 153 

al. (27) showed that both the MP of grapevine fanleaf virus (GFLV) and the MP of 154 

cauliflower mosaic virus (CaMV) interact with PDLPs at PDs, and that the systemic 155 

movement of both viruses was inhibited in pdlp1 pdlp2 pdlp3 triple knock-out Arabidopsis 156 

thaliana mutants (27). The interaction with the PDLP family of proteins might be a 157 

common feature of the tubule-forming viruses. Consistently, also the tubule-forming MP of 158 

cowpea mosaic virus (CPMV) was shown to interact with PDLP1 in vivo (28). To 159 

determine whether the MPCPsV has the capacity to interact with PDLP1 we used 160 

fluorescence lifetime imaging microscopy (FLIM) to measure the degree of fluorescence 161 

resonance emission transfer (FRET) between the GFP and monomeric red fluorescent 162 

protein (RFP) moieties of MPCPsV:GFP and PDLP1:RFP expressed in N. benthamiana 163 

epidermal cells. When MPCPsV:GFP was expressed alone, the average fluorescence lifetime 164 

(τ) of GFP was 2,1 ± 0.1 ns (n = 65) (FIG. 2Ai and v). A similar τ value of 2,1 ±0.08 ns (n 165 

= 59) was measured when this protein was co-expressed with PD callose-binding protein 1 166 

fused to the red fluorescent protein Cherry (PDCB1:Cherry) (48) (FIG. 2Aii and v). When 167 

MPCPsV:GFP was co-expressed with an RFP-tagged version of the MPCPsV (MPCPsV:RFP), 168 

the τ value was 1,9 ± 0.1ns (n = 30). This value is significantly different (P<0,01) from the 169 

τ value observed when MPCPsV:GFP was expressed alone and represents a FRET efficiency 170 

of 10% (FIG. 2Aiii and v), thus indicating the capacity of MPCPsV to oligomerize. Co-171 

expression of MPCPsV:GFP with PDLP1:RFP resulted in a τ-value of 2,0 ± 0.1 ns (n = 78) 172 

(5% FRET), which also differed significantly (P<0,01) from the τ-value obtained when 173 

MPCPsV:GFP was expressed alone (FIG. 2Aiv and v). Given that the efficiency of FRET 174 

depends on intermolecular vicinity between GFP and RFP moieties, we wondered whether 175 

the FRET efficiency could be altered upon changing the position of the GFP fusion to 176 

MPCPsV from the C-terminus to the N-terminus. The average fluorescence lifetime (τ) of 177 

GFP was 2,47 ± 0.04 ns (n = 65) when the GFP:MPCPsV fusion protein was expressed alone 178 

(FIG. 2Bi and v). A similar τ value was measured when this protein was co-expressed with 179 

PD callose-binding protein 1 PDCB1:Cherry (48) (FIG. 2Bii and v). When GFP:MPCPsV 180 

was co-expressed with MPCPsV:RFP, the τ value was 2,1 ± 0.1ns (n = 76). This value is 181 

significantly different (P<0,01) from the τ value observed when GFP:MPCPsV was 182 

expressed alone and represents a FRET efficiency of 15% (FIG. 2Biii and v), thus showing 183 
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again MP-MP oligomerization irrespective of the orientation of the GFP fusion to the 184 

protein. Co-expression of GFP:MPCPsV with PDLP1:RFP resulted in a τ-value of 1,9 ± 0.1 185 

ns (n = 42) (23% FRET), which also differed significantly (P<0,01) from the τ-value 186 

obtained when GFP:MPCPsV was expressed alone (FIG. 2Biv and v). These results confirm 187 

that the MPCPsV has the capacity to oligomerize and to interact with PDLP1. 188 

PDLPs are targeted to PD via the ER-Golgi secretory pathway (29) through COPII vesicles 189 

which are formed at ER-exit sites (49).The vesicle formation is dependent on Sar 1,a Ras-190 

like small GTPase. Consistently, the expression of a dominant-negative mutant of 191 

Sar1[H74L], inhibited COPII vesicle formation and thus PDLP targeting to PD (49, 50). To 192 

test if the inhibition of PDLP targeting to PD affects the tubule formation by MPCPsV at PD, 193 

we transiently expressed PDLP1:RFP or MPCPsV:RFP together with either Sar1[H74L]:GFP 194 

or with the wild type Sar1:GFP as control. Co-expression with the wild type Sar1:GFP 195 

showed no effect on the targeting of PDLP1:RFP to PD (FIG. 2Ci and ii) and the ability of 196 

MPCPsV to assemble tubule-like structures at PD (FIG. 2Di, ii and Table 1). However, co-197 

expression with Sar1[H74L]:GFP inhibited PDLP1:RFP accumulation of at PD (FIG. 2Ciii 198 

and iv) and as previously shown, it remains located at the ER (27, 29). In addition, although 199 

the MPCPsV:RFP was detected at PD, as seen by callose co-staining with aniline blue, the 200 

ability of MPCPsV:RFP to form tubule-like structures was inhibited (FIG. 2Diii, iv and Table 201 

1). Thus, the ability of MPCPsV to assemble tubules requires an intact ER-Golgi pathway. 202 

 203 

MPCPsV GFP-fusion orientation and protein processing determines cell-to-cell 204 

movement activity 205 

Given that MPCPsV:GFP, but not GFP:MPCPsV, is capable of forming tubules at PD, we 206 

wondered whether this has functional relevance in virus movement. Since an infectious 207 

cDNA clone of CPsV to test this hypothesis by a reverse genetic approach is not available, 208 

we used an alternative assay to evaluate this activity (45, 46). In this assay we analyzed the 209 

capacity of MPCPsV:GFP and GFP:MPCPsV to trans-complement TMVΔMPΔCP-GFP, a 210 

previously reported movement-deficient TMV derivative (45). Highly diluted 211 

Agrobacterium cultures harboring the TMVΔMPΔCP-GFP-encoding plasmid were 212 

infiltrated together with cultures for the expression of either MPCPsV:GFP, GFP:MPCPsV or 213 

GFP as a negative control. The sizes of the highly GFP-fluorescent infection foci grown by 214 
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viral cell-to-cell movement from initially TMVΔMPΔCP-GFP inoculated cells were 215 

measured at 5 days post agroinfiltration (dpai). MPCPsV:GFP- and GFP:MPCPsV-expressing 216 

tissues exhibited larger foci than the GFP-expressing control tissues, indicating that MPCPsV 217 

complements TMVΔMPΔCP-GFP cell-to-cell movement irrespective whether fused to 218 

GFP at the N- or C-terminus (FIG.3A). Nevertheless, the infection foci complemented by 219 

GFP:MPCPsV were significantly smaller (P<0,01) than those complemented by MPCPsV:GFP 220 

(FIG. 3A).  221 

Immunoblot analysis using antibodies against the fused fluorescent protein tags showed 222 

that both fusion proteins were expressed at a similar level (FIG. 3B), suggesting that the 223 

difference in complementation efficiency between GFP:MPCPsVand MPCPsV:GFP is not 224 

caused by a dose-dependent effect on movement activity. Surprisingly, expression of the C-225 

terminal fusion protein (MPCPsV:GFP) led to the production of a 79 kDa protein and a 226 

smaller GFP-containing protein of ≈ 48 kDa. Interestingly, expression of the N-terminal 227 

fusion protein (GFP:MPCPsV) led to production of a GFP containing protein of ≈69 kDa in 228 

addition to the expected 82 kDa protein (FIG. 3B). In silico analysis with TargetP software 229 

(51) showed that MPCPsV encodes a N-terminal chloroplast transit peptide (cTP) (FIG 3.C). 230 

Because these signals are cleaved upon chloroplast import, the 3 kDa mass difference 231 

observed between MPCPsV:GFP and GFP:MPCPsV, could be a consequence of protein import 232 

at the chloroplast. In agreement with this hypothesis, we found that only the C-terminal 233 

fusion protein accumulates at chloroplasts (FIG. 3C).  234 

Importantly, the expression profiles of the additional GFP-containing proteins are 235 

compatible with a post-translational cleavage event, in which two MPCPsV peptides of 236 

34kDa and 20 kDa (N- and C-terminal fragments, respectively) are produced.  237 

 238 

The MPCPsV contains a functional aspartic protease motif 239 

The occurrence of MPCPsV protein fragments was also observed in protein extracts of 240 

CPsV-infected Chenopodium quinoa plants using an antiserum against MPCPsV. In these 241 

extracts a band of approximately 54 kDa corresponding to full length MPCPsV, and two 242 

other bands of 34kDa and 20 kDa were seen (52). To further test these previous 243 

observations, we repeated the immunoblot analysis using protein extracts from the systemic 244 

host Nicotiana occidentalis P1 infected with CPsV. As shown in FIG. 4A, the MPCPsV-245 
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specific antibody indeed detected again the three distinct bands of 54 kDa, 34 kDa and 20 246 

kDa, thus confirming the expression of three RNA 2-specific proteins during infection. 247 

To address the origin of the observed MPCPsV fragments, we analyzed the aminoacid 248 

sequence of the protein using the HHpred software package (53). We identified a region 249 

between aminoacids 331 and 413 of MPCPsV showing aminoacid sequence similarity with 250 

the catalytic aspartic site of cathepsin D as well as retroviral proteases, such as the protease 251 

of HIV-2 (FIG. 4Bi). Consistently, also the MP of the ophioviruses MLBVV (MPMLBVV) 252 

(protein id: AAN60448.1, region: 360-438) and BlMaV (MPBlMaV) (protein id: AIF28243.1, 253 

region: 368-450) showed sequence similarity with retroviral proteases and cathepsin D 254 

(FIG. 4Bii and iii). The identified region in MPCPsVcontains an aspartic residue (D), which 255 

is also the first aminoacid of an aminoacid triad that is strictly conserved among 256 

ophioviruses MPs (45). This finding suggests that MPCPsV and other ophiovirus MPs have 257 

an autocalytic protein cleavage activity. 258 

To determine the location of the proteolytic cleavage site within the MPCPsV aminoacid 259 

sequence, we aligned the MPCPsV sequence with HIV-1 protease substrate peptides (54). We 260 

found that all these peptides aligned to the aminoacid sequence 305NLSNFLADQR314 of 261 

MPCPsV (FIG. 4B), which is compatible with the location of a cleavage site expected to 262 

result in the formation of 34kDa and 20 kDa cleavage products. To identify the cleavage 263 

site, we expressed MPCPsV:GFP and GFP (negative control) in N. benthamiana and 264 

immunopurified these proteins with anti-GFP agarose beads followed by on-bead tryptic 265 

digestion and identification of the peptide by LC MS/MS. MS/MS spectra corresponding to 266 

peptides with only one end compatible with trypsin digestion and found in three 267 

independent MPCPsV:GFP expressing samples and immunopurification experiments were 268 

analyzed. MS/MS spectra indicate the existence of peptides derived from the C-terminal 269 

end of the 34 kDa protein (FIG. 4 Ci) and another from the N-terminal end of the 20 kDa 270 

protein (FIG. 4Cii) compatible with a cleavage between the aminoacids 310LA311. 271 

To further prove that MPCPsV contains an active aspartic protease motif responsible for the 272 

observed cleavage products, we mutated the respective sequence motifs within MPCPsV and 273 

studied the effect of the mutations on the proteolytic processing of the protein. Site-directed 274 

mutagenesis was used to replace the predicted catalytic Asp residue (D340) by Ala (A) or 275 

Asn (N), and the mutant derivatives of MPCPsV were named hereafter MPCPsVD340A and 276 
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MPCPsVD340N, respectively (FIG. 4D). Additionally, we constructed GFP and RFP fusions 277 

to the 34KCPsV (N-terminal cleavage product) and 20KCPsV (C-terminal cleavage product) 278 

proteins (FIG. 4D). The same approach was used to construct protein with mutations at the 279 

cleavage site. Thus aminoacids at 310LA311 were replaced by an Asp residue, thereby 280 

leading to two protein mutants named MPCPsVL310D and MPCPsVA311D. We also created 281 

MP  mutants named MPCPsVA311R and MPCPsVA311H in which the Ala at the position 311 282 

was replaced by Arg or His respectively. Upon transient expression in N. benthamiana, 283 

both MPCPsVD340A and MPCPsVD340N fused to RFP occurred with their expected sizes of 284 

79 kDa (FIG. 4E). However, the 48 kDa cleavage product observed for MPCPsV:RFP was 285 

not detected for these mutants, which indicates that the aminoacid D340 is indeed critical 286 

for protein cleavage (FIG. 4E). As expected, expression of the fluorescent protein-fused 287 

20KCPsVand 34KCPsVproteins were detected as immuno-reactive bands of 48 kDa and 62 288 

kDa, respectively (FIG. 4E). The four mutant proteins MPCPsVL310D, MPCPsVA311D, 289 

MPCPsVA311R and MPCPsVA311H that carry mutations at the cleavage site showed a 290 

cleavage product as observed for the MPCPsV upon expression in C-terminal fusion to RFP. 291 

Thus, none of the mutations introduced at the protein cleavage location prevened the 292 

aspartic protease motif to recognize and cleave the protein at this location (FIG. 4E). 293 

 294 

MPCPsV self-cleavage determines subcellular localization 295 

Next, we used confocal fluorescence microscopy to determine whether the introduced 296 

mutations in the sites involved in catalytic cleavage of MPCPsV affect the subcellular 297 

localization of the protein. MPCPsV:GFP localized to PD, tubule-like structures at PD, 298 

nucleus, chloroplast (FIG. 3C),cytoplasm and microtubules, as previously described (52) 299 

(FIG. 5A). In comparison, expression of MPCPsVD340A:GFP led to a strongly reduced 300 

nuclear localization of the GFP signal suggesting that the nucleus may accumulate the MP 301 

cleavage products rather than the full-length protein. Instead, GFP signal was more strongly 302 

associated with chloroplasts. Importantly, MPCPsVD340A:GFP accumulated at PD but 303 

failed to form tubule-like structures (FIG.5B). The same subcellular localization pattern 304 

was also obtained for MPCPsVD340N:GFP (FIG. 5C). Expression of 34KCPsV:GFP led to the 305 

localization of GFP fluorescence exclusively at chloroplasts and also at PD, where it 306 

formed tubular-like structures (FIG. 5D). In contrast, expression of 20KCPsV:GFP led to 307 
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diffuse GFP fluorescence in the cytoplasm and nucleus (FIG. 5E) and showed no other 308 

specific subcellular localization. The presence of tubule-like structures at PD in cells 309 

expressing either MPCPsV:GFP or 34KCPsV:GFP, and the absence of the tubule-like 310 

structures in cells expressing MPCPsVD340A:GFP or MPCPsVD340N:GFP indicates that the 311 

cleavage of MPCPsV by the aspartic protease motif is a prerequisite for tubule formation. 312 

Since the full-length MPCPsV is not able to form tubules, the fluorescent tubules observed in 313 

MPCPsV:GFP samples are likely formed by the unfused 34KCPsV cleavage product, which 314 

allow the incorporation of the full-length MPCPsV:GFP protein into these structures. 315 

 316 

The 20KCPsVcleavage product is an aspartic viral protease 317 

Since the protein cleavage mechanism used by aspartic proteases involves two catalytic 318 

triads (55), the 20KCPsVcleavage product that retains the aspartic protease activity should 319 

also retain a capacity to dimerize. To test this hypothesis, we measured the fluorescence 320 

lifetime of 20KCPsV:GFP upon co-expression with 20KCPsV:RFP. Under these conditions, 321 

the τ of 20KCPsV:GFP localized at the nucleus was 2,37 ±0.05 ns (n = 23) and a very similar 322 

fluorescence lifetime of 20KCPsV:GFP of 2,32 ±0.05 ns (n = 14) was measured when 323 

expressed together with RFP as a negative control (P<0,01). A significantly lower τ value 324 

was determined when 20KCPsV:GFP was co-expressed with 20KCPsV:RFP (2,16 ±0.08 ns; n 325 

= 19;P<0,01), representing a FRET efficiency of 9 %. Similar fluorescence lifetime 326 

measurements were repeated by focusing on the proteins localized in the cytoplasm. Here, 327 

the 20KCPsV:GFP and 20KCPsV:RFP underwent FRET with an efficiency of 14% (FIG. 6A 328 

iii and v). These observations indicate that the cleaved20KCPsVpeptide retains the ability to 329 

dimerize and thereby to form the dimeric catalytic triad proposed to be involved in its 330 

protease activity.  331 

Next, we wondered whether the aspartic protease activity of MPCPsV can recognize and 332 

process its target in trans. Immunoblot analysis of extracts derived from agro-infiltrated N. 333 

benthamiana leaves co-expressing MPCPsV:RFP together with the proteolytic activity-334 

deficient mutant MPCPsVD340A:GFP revealed that full length protein, and/or the 335 

20KCPsV:RFP autocleavage product efficiently cleaves the MPCPsVD340A:GFP in trans 336 

(FIG. 6B; immunoblots on the left). The trans-acting proteolytic activity indeed resides in 337 

the cleaved 20KCPsVpeptide, as was confirmed upon coexpression of MPCPsVD340A:GFP 338 
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with 20KCPsV:RFP (FIG. 6B;immunoblots on the right). Consistent with 339 

MPCPsVD340A:GFP cleavage by MPCPsV:RFP or 20KCPsV:RFP, green fluorescent tubule-340 

like structures were seen at PD (FIG. 6C). Thus, MPCPsV has the capacity to execute 341 

cleavage in trans as well as in cis and the protease activity segregates with the aspartic 342 

protease within the cleaved 20KCPsV protein fragment upon cleavage.  343 

 344 

Cell–to-cell movement activity depends on the 34K protein 345 

The effect of the MPCPsV protease domain mutations on supporting viral movement was 346 

tested in our functional complementation assay using movement-deficient TMV (45, 52). 347 

As shown in FIG. 7A, TMVΔCPΔMP-GFP movement was complemented in leaves 348 

transiently expressing MPCPsV:RFP as well as in leaves transiently expressing the MP of 349 

TMV (MPTMV:RFP) as demonstrated by the occurrence of infection foci at 5 dpai under 350 

these conditions. Such efficient functional complementation TMVΔCPΔMP-GFP also 351 

occurred in the presence of 34KCPsV:RFP but not by 20KCPsV:RFP. MPCPsVD340A:RFP and 352 

MPCPsVD340N:RFP were also able to complement TMVΔCPΔMP-GFP; however, the 353 

average sizes of infection foci were smaller than those formed in the presence of 354 

MPCPsV:RFP or MPTMV:RFP (FIG. 7B). Interestingly, foci formed in the presence of 355 

34KCPsV:RFP, which contains the 30K superfamily domain (45), were larger than the foci 356 

formed in the presence MPCPsV:RFP, although they were still smaller than those formed in 357 

the presence of MPTMV:RFP (FIG. 7B and 7C). The observation that the expression of the 358 

34KCPsV cleavage fragment is sufficient and even more efficient in complementing viral 359 

movement than the expression of the full length MPCPsV underscores the importance of 360 

efficient MPCPsV cleavage with MPCPsV function in supporting virus movement. 361 

 362 

34KCPsVbehaves as a tubule forming MP 363 

The above-described results indicate that MPCPsV processing into 34 kDa and 20 kDa 364 

cleavage products is essential to enable the formation of tubule-like structures at PD and 365 

that this feature of MPCPsV contributes to the function as a MP. Given that the expression of 366 

the N-terminal 34KCPsV fragment, but not the expression of the C-terminal 20KCPsV 367 

fragment, leads to tubule formation at PD and is sufficient for complementing the cell-to-368 

cell movement of a MP-deficient TMV construct, we wondered whether 34KCPsV has the 369 
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ability to interact with other 34KCPsVmolecules as well as with PDLP1, as observed for 370 

MPCPsV. FLIM measurements on transiently expressed 34KCPsV:GFP revealed an average 371 

GFP fluorescence lifetime of 2,2 ns when this protein was expressed alone (FIG. 8Ai), and 372 

a similar value was measured when this protein was co-expressed with PDCB1:Cherry 373 

(FIG. 8Aii). However, when 34KCPsV:GFP was co-expressed with 34KCPsV:RFP, the 374 

average fluorescence lifetime of GFP was reduced to 1,7 ns, thus revealing a FRET 375 

efficiency of 23% (P<0,01). When 34KCPsV:GFP was co-expressed with PDLP1:RFP, the 376 

average fluorescence lifetime of GFP was 2,0 ns (FIG. 8Ciii), which represents a FRET 377 

efficiency of 9 % (P<0,01). These data indicate that 34KCPsV has the capacity to 378 

oligomerize and to interact with PDLP1 similar like the full-length MPCPsV. 379 

Finally, we wanted to know whether the formation of tubules by 34KCPsV depends on the 380 

ER-Golgi pathway and the targeting of PDLP1 to PD, as in the case of MPCPsV. Co-381 

expression of 34KCPsV:RFP with Sar1:GFP wt (FIG 8Ci, ii and v) allowed the formation of 382 

34KCPsV:RFP tubules in 57% of the PD within the observed leaf area (Table 2). On the 383 

contrary, when 34KCPsV:RFP was co-expressed with Sar1[H74L]:GFP, 34KCPsV:RFP 384 

localized to PD but the percentage of PD with 34KCPsV:RFP tubules was significantly lower 385 

(10%, P<0,01; Table 2). The PDLP1:RFP targeting to PD was again inhibited by co-386 

expression of Sar1[H74L]:GFP but not by co-expression of Sar1:GFP, as already shown. 387 

Thus, inhibition of ER-Golgi pathway reduces PDLP1 targeting to PD and tubule formation 388 

by 34KCPsVand MPCPsV. Both the MPCPsV and its cleavage fragment 34KCPsV interact with 389 

PDLP1, which shows reduced targeting to PD upon inhibition of the ER-Golgi pathway. 390 

Thus, the 34KCPsVcleavage product carries the PDLP1-interacting and tubule-forming 391 

functions required for virus movement and activated upon MPCPsV cleavage. 392 

 393 

Discussion 394 

We have shown that MPCPsV has the capacity to target PD, to interact at PD with PDLP1 for 395 

oligomerization and tubule assembly, and to function in virus movement. Moreover, we 396 

found that MPCPsV is cleaved into an N-terminal 34 kD (34KCPsV) fragment carrying the 397 

30K super-family domain and into a C-terminal 20 kDa (20KCPsV) fragment carrying an 398 

aspartic protease motif responsible for this cleavage. Consistent with the presence of the 399 

30K super-family domain, the 34 kDa fragment carries the ability to target PD, to interact 400 
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with PDLP, and to function in virus movement. Mutations within the catalytic domain of 401 

the protease motif abolish tubule formation, alter subcellular localization and decrease the 402 

efficiency of the protein in complementing spread of a MP-deficient TMV, thus indicating 403 

that the formation of the 34 kDa fragment is a prerequisite for tubule-guided movement. 404 

However, the autocleavage-deficient MPCPsVD340A:RFP and MPCPsVD340N:RFP proteins 405 

retained some of their movement function and complemented the movement of a MP-406 

deficient TMV construct to some extent without being able to form tubules. This, together 407 

with the fact that TMV is the prototype for non-tubule-guided movement, suggests that the 408 

tubule-guided mechanism may not be the only mechanism by which MPCPsV supports for 409 

virus movement. Nevertheless, tubule-like structures were found at the PD of CPsV-410 

infected sweet orange plants, suggesting that the virus indeed uses a tubule-guided 411 

movement as a mechanism for movement in its natural host. Ophiovirus particles have been 412 

described as open circular CP decorated flexuous filaments of 3-4 nm thickness (56). Since 413 

tubule-forming viruses usually have an icosahedral particle morphology, such as CPMV 414 

(15, 37), CaMV (11, 27, 32, 33), GFLV (27, 34-36), alfalfa mosaic virus and brome mosaic 415 

virus (39) and tomato spotted wild virus (13), the use of a tubule-guided mechanism by 416 

CPsV may be unexpected. Tubule-guided movement by icosahedral viruses depends on 417 

CP-MP interactions that may allow the viral particles to be guided along the inner tubule 418 

wall (57-60). A tubule-guided mechanism also used by CPsV may therefore be supported 419 

by our previous observation that the MP and CP of CPsV are able to interact (46). Based on 420 

the importance of the 34K fragment of MPCPsV for virus movement, it may be expected that 421 

this fragment interacts with CP within the tubules. 422 

Plant virus-encoded proteases belong to three classes (61). Whereas serine and serine-like 423 

proteases have been described in Poty- (62, 63) and Secoviridae (64-66) families, cysteine 424 

proteases are present in Beny- (67), Marafi- (68), Tymo- (69) and Closterovirus (70), while 425 

aspartic proteases occur in the Caulimoviridae family (55, 71). The protease of CaMV 426 

carries sequence similarity with retrovirus protease (72), thus similar to MPCPsV as shown 427 

here. To our knowledge this is the first report of an aspartic protease encoded by a plant 428 

virus with a negative-strand RNA genome.Virus-encoded aspartic proteases are small 429 

proteins of 10-15 kDa carrying an invariant catalytic aminoacid motif D (T or S) G. The 430 

catalytic form of the enzyme is usually composed of two monomers each providing one D 431 
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(T or S) G motif. Cellular aspartic proteases contain two motifs in a single polypeptide 432 

chain (55). The 20KCPsV fragment contains only one DTG motif, which suggested that this 433 

fragment should dimerize. As shown here 20K-20K interaction takes place at both the 434 

nucleus and cytoplasm. At this latter location 20KCPsV co-localized with the MPCPsVD340A 435 

self-cleaving deficient mutant, which is cleaved in trans by the 20KCPsV but not when 436 

expressed alone. Therefore, the 20KCPsV acts as a viral protease involved in the maturation 437 

of the MPCPsV full-length protein. In both transient expression experiments as well as 438 

during infection we see that the processing of the full-length MPCPsV is not exhaustive and a 439 

high proportion of the MPCPsV remains full length. This is also observed for the trans-440 

cleavage of MPCPsVD340A by 20KCPsV, suggesting that the protease activity is under 441 

regulation (61). Mutants at the cleavage site evaluated in this work showed the capacity to 442 

undergo autocleavage, even though when the aminoacids 310LA311were replaced for 443 

residues with different physicochemical properties, suggesting that these positions are not 444 

critical for recognition of the cleavage site. Further studies are required to determine the 445 

mechanism by which the cleavage site is recognized and cleaved by the protease. 446 

Moreover, it would also be important to know whether the 20KCPsV protease targets also 447 

other CPsV proteins, or even host proteins, during infection. 448 

We recently showed that MPCPsV can suppress RNA silencing (44). It would be interesting 449 

to know whether the RNA silencing suppressing activity resides in the N-terminal 20 kDa 450 

or 34 kDa cleavage fragment of the protein. 451 

In conclusion, we propose here a model where the 54K protein encoded in RNA 2 of CPsV, 452 

is a poly-protein containing MP and protease activity and should be renamed hereafter as 453 

MP-PRO. The MP-PRO polyprotein is cleaved by its aspartic protease activity. This 454 

processing event generates two fragments, an N-terminal fragment (34KCPsV) capable of PD 455 

targeting and tubule formation renamed as MPCPsV, and a C-terminal fragment (20KCPsV) 456 

carrying the aspartic protease activity, renamed as PRO. The MPCPsV fragment is sufficient 457 

and even more efficient than the full length MP-PRO in complementing a movement-458 

deficient TMV, although the mechanism can be more specific in the natural host. The 459 

observation that the cleavage-deficient mutant MP-PRO D340A supports TMV movement, 460 

albeit to a lower efficiency, although it does not form tubules, indicates that the full-length 461 

protein complements movement by a different mechanism. 462 
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 463 

Material and Methods 464 

 465 

Virus isolates and plant inoculation  466 

Young leaves of sweet orange plants [Citrus sinensis (L.) Osb] that were either healthy or 467 

systemically infected with the CPV-4 isolate of CPsV (73) were used for transmission 468 

electron microscopy analysis. The CPsV isolate 90-1-1 (74) was used for mechanical 469 

inoculation of Nicotiana occidentalis P1 leaves to obtain protein extracts from infected 470 

plants for Immunoblot assays. 471 

 472 

Plasmid constructs, bacterial strains and agroinfiltration assays  473 

Protein fusions MPCPsV:GFP and MPCPsV:RFP have been described earlier (52). Mutant 474 

MPCPsV derivatives D340A, D340N, 20K and 34K were obtained by site-directed 475 

mutagenesis with specific primers and Pfu DNA polymerase (Inbio, Argentina), and using 476 

the GATEWAY system-based plasmid pTOPO-MPCPsV (46) as template. Primer sequences 477 

are available upon request. The PCR products were digested with DpnI (NEB, USA) to 478 

remove the methylated DNA template before transformation into Escherichia coli DH5α 479 

competent cells. The introduced mutations were verified by DNA sequencing. The resulting 480 

pTOPO-MPCPsV derivatives carrying the desired mutations were subjected to LR 481 

recombination (Thermofisher, USA) with destination vectors pB7RWG2 and pB7FWG2 482 

(75), and the resulting plasmids that now encode the mutant MPCPsV proteins fused to either 483 

RFP or GFP were transferred into Agrobacterium tumefaciens GV3101.  484 

For transient expression of the fluorescent fusion proteins, A. tumefaciens cultures were 485 

harvested by centrifugation, resuspended in water to a final OD600nm of 0.3 (unless stated 486 

differently) and infiltrated into the abaxial side of the leaf using a syringe without needle. 487 

Leaves were observed at 2-3 days post agroinfiltration (dpai). The expression, size and 488 

integrity of the fusion proteins were confirmed by Immunoblot assays. 489 

 490 
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Protein analysis  491 

Four leaf discs (1.0 cm in diameter) were excised from N. benthamiana leaves expressing 492 

the viral proteins, ground in liquid nitrogen to fine powder and resuspended in 200 µl of 493 

protein extraction buffer (Tris-HCl 75 mM pH = 6.8, 30% glycerol, 5 % β-494 

mercaptoethanol, 2% SDS, protease complete inhibitor cocktail (Roche, Germany). This 495 

extract was centrifuged at 16000 g for 2 min, and the supernatant was used for immunoblot 496 

analysis by adding 200 µl of 4X Laemmli buffer. Samples were boiled for 5 min and 497 

centrifuged for 2 min at 16000 g. MPCPsV (54 K protein) was detected with anti-54K serum 498 

as previously described (52). GFP and RFP fusion proteins were detected with anti-GFP 499 

(JL-8) monoclonal antibody (BD Biosciences, Clontech, USA) and anti-RFP (6G6) 500 

monoclonal antibody (Chromotek, Germany), respectively. Horseradish peroxidase-501 

conjugated anti-mouse (BioRad, USA) was used as secondary antibody. Chemiluminescent 502 

reagent was used for detection of peroxidase activity according to the manufacturer’s 503 

instructions (GE, ECL Plus Western Blotting Detection Reagents, UK). Densitometry of 504 

the protein bands was applied to quantify signal strength using ImageJ(76). 505 

Immunopurification and peptide identification by LC MS/MS 506 

Four grams of tissue powder were resuspended in 8 ml of ice-cold extraction buffer (10 507 

mM Tris/HCl pH 7,5; 150 mM NaCl; 5 mM EDTA; 0,5% NP-40, 1mM PMSF) 508 

supplemented with one tablet of complete protease inhibitor cocktail (Roche, country) per 509 

10 ml of buffer and incubated for 30 min, with occasionally inversion of the tube. This 510 

extract was centrifuged at 11000 x g for 30 min, filtered thought miracloth paper, and 511 

centrifuged again for 30 min at 11000 x g at 4 °C. The cleared extracted was incubated with 512 

50 ul of GFP-Trap agarose beads (Chromotek, Germany) for 1hr 30 min at 4 °C. The beads 513 

were collected by centrifugation at 2500 x g for 2 min at 4 °C. The supernatant was 514 

discarded and the beads were washed four times with washing buffer 1 (WB1:10 mM 515 

Tris/HCl pH 7,5; 150 mM NaCl; 5 mM EDTA, 1 mM PMSF). Bound proteins were 516 

reduced with 50 mM dithiothreitol in 50 mM ammonium bicarbonate and alkylated with 50 517 

mM iodoacetamide in ammonium bicarbonate buffer before they were on-bead digested 518 

with Tripsin Gold over-night according to manufacture instructions (Promega, USA). 519 

Samples were centrifugated at 4 °C and 16000 x g in a microcentrifuge, the supernatants 520 
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containing the tryptic peptides were desalted with Zip-Tip C18 (Millipore, USA), and 521 

samples were lyophilizated and finally resuspended in 10 ul of 0,1% Formic acid solution.  522 

The resulting peptides were then separated by reverse phase nanoHPLC (Thermo Scientific, 523 

EASY-Spray Accucore (P/N ES801)) with a continuous gradient of two solutions, i.e. 0,1 524 

% formic acid in water and 0,1% formic acid in acetonitrile. The nanoHPLC column was 525 

coupled to an Electro Spray ionization source (EASY-SPRAY, Thermo Scientific) at a 526 

spray voltaje of 3,5 kV. Following ionization, the ions were further separated and analyzed 527 

by a mass spectrometer Q-Exactive (Thermo Scientific) equipped with a High Collision 528 

Dissociation and an Orbitrap analyzer. Protein identification was carried out with 529 

MaxQuant 4.0 software, using an N. benthamiana database (Boyce Thompson Institute) 530 

where the 54K:GFP protein sequence was added. The digestion mode was semispecific to 531 

allow identification of the peptides derived from the aspartic protease. All the parameters 532 

left were set with the default values. The peptides were analyzed based on MS/MS count, 533 

which is the number of sequencing events for this sequence and the Posterior Error 534 

Probability (PEP) of the identification. The PEP value essentially operates as a p-value. 535 

Peptides with the highest MS/MS count and lowest PEP value were selected. 536 

 537 

Microscopy 538 

Confocal laser scanning microscopy (CLSM) and Fluorescence lifetime imaging 539 

microscopy (FLIM) were performed as described previously (77). Briefly, for CLSM a 540 

Leica TCS SP5 II microscope equipped with a HCX PL APO CS 63.0x 1.40 OIL UV 541 

objective was used. Excitation/emission wavelengths were 488/524-550 nm for GFP and 542 

543/566-634 nm for RFP and 405/473-579nm for Aniline blue. Chloroplast 543 

autofluorescence was detected by excitation at 488 nm and emission filtering at 654-544 

730nm. Images were acquired with LAS AF version 2.2.1 4842 software and processed 545 

with ImageJ software. Callose staining was achieved by infiltrating leaf disks with 0,01% 546 

Methy blue (Fluka, UK) solution in PBS buffer prior to observation. FLIM analysis of GFP 547 

fluorescence was done with a Lambert Instruments Fluorescence Lifetime Attachment 548 

(LIFA) mounted on a Nikon TE2000 inverted microscope. The microscope was equipped 549 

with a 63x NA 1.4 oil objective and specific filters for excitation/emission wavelengths of 550 
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460–500/510–560 nm for detection of GFP and of 550–600/615–665 nm for detection of 551 

RFP. FLIM images were acquired and processed with LI-FLIM software version 1.2.9.117 552 

(Lambert Instruments). ANOVA analysis was performed, followed by a Turkey test (α= 553 

0.01). FRET efficiency was calculated as %FRET = 1 − τDA/ τ D × 100, whereby τD is the 554 

lifetime of the donor in the absence of the acceptor and τDA is the lifetime of the donor in 555 

the presence of the acceptor. 556 

For transmission electron microscopy (TEM), symptomatic leaves from systemically 557 

infected sweet orange plants and healthy leaves from non-infected plants were harvested at 558 

a similar developmental stage and fixed at 4 °C with 2% glutaraldehyde in phosphate buffer 559 

under smooth vacuum during 2 hrs. Secondary fixation was carried out at 4 °C with 1% 560 

osmiun tetroxide under vacuum for 1 hr. Samples were dehydrated and embedded in epoxy 561 

resin followed by ultrathin sectioning (70 nm). Uranyl acetate and lead citrate were used to 562 

contrast the samples prior to observation with a JEM 1200 EX II transmission electron 563 

microscope (JEOL Ltd., Tokio, Japan). Images were acquired with an Erlangshen 564 

ES1000W (Model 785) CCD camera (Gatan Inc., Pleasanton, California, USA). 565 

 566 

TMV trans-complementation assays 567 

Trans-complementation assays were performed as previously described (45). Briefly, 568 

agrobacteria cultures carrying a TMVΔMPΔCP-GFP-expressing binary plasmid were 569 

resuspended in water to an OD600nm of 1 x 10 -5 and infiltrated into N. benthamiana leaves 570 

together with agrobacteria resuspended in water to an OD600nm of 0.3 and carrying plasmids 571 

encoding either RFP, MPTMV, MPCPsV, MPCPsVD340A, MPCPsVD340N, 34KCPsV,or 20KCPsV. 572 

The development of infection foci was observed at 3, 4, and 5 dpai. At these time points, 573 

scaled images were acquired and the size of the infection foci was measured with ImageJ 574 

software (76). 575 

 576 
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Figure legends 590 

FIG. 1. Tubule-like structures in the cell walls of CPsV-infected C. sinensis plants. (A) 591 

Transmission electron microscopy images showing PD in healthy (i) and infected (ii) C. 592 

sinensis plants. PD, plasmodesmata; CW, cell wall. The arrow in (ii) points to a tubule-like 593 

structure protruding from a modified PD. Scale bar, 100 nm. (B) CLSM of N. benthamiana 594 

epidermal cells expressing GFP:MPCPsV (i) or MPCPsV:GFP (ii). Arrowheads in (i) and (ii) 595 

indicate the presence of GFP:MPCPsV and MPCPsV:GFP at PD; arrows in (ii) indicate the 596 

presence of tubules containing MPCPsV:GFP at PD. Scale bar, 30µm.  597 

FIG.2. MPCPsV-PDLP interaction is necessary for MP-tubule formation at PD. (A) 598 

FRET-FLIM measurements of N. benthamiana epidermal cells expressing (i) MPCPsV:GFP 599 

alone, or together with either (ii) PDCB1:Cherry, (iii) MPCPsV:RFP, or (iv) PDLP1:RFP. 600 

Fluorescent intensity images (top) are combined with fluorescence lifetime images (bottom) 601 

showing lifetime in false color code according to the color scale on the left. Scale bar, 10 602 

µm. A representative fluorescence lifetime analysis based on three independent replicate 603 

experiments is shown (v). τ, fluorescent lifetime (ns); SD, standard deviation; N, number of 604 

cells analyzed. Asterisks represent significant differences compared to MPCPsV:GFP 605 

expressed alone (P<0,01). (B) FRET-FLIM measurements of N. benthamiana expressing (i) 606 

GFP:MPCPsV alone or together with (ii) PDCB1:Cherry, (iii) MPCPsV:RFP, or (iv) 607 

PDLP1:RFP. Fluorescent intensity images (top) are combined with fluorescence lifetime 608 

images (bottom) showing lifetime in false color code according to the color scale on the 609 

left. Scale bar, 10 µm. A representative fluorescence lifetime analysis based on three 610 

independent replicate experiments is shown (v). τ, fluorescent lifetime (ns); SD, standard 611 
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deviation; N, number of cells analyzed. Asterisks represent significant differences respect 612 

to GFP:MPCPsV expressed alone in GFP fluorescence lifetime (P<0,01). (C) Expression of 613 

PDLP1:RFP together with either Sar1:GFP (i and ii) or Sar1[H74L]:GFP (iii and iv) (only 614 

RFP channel is shown in magenta). The images (ii) and (iv) (scale bar, 10 µm) show 615 

enlargements of the framed tissue regions indicated in (i) and (ii) (scale bar, 50 µm); 616 

arrowheads indicate PD. Immunoblots (v) show protein expression levels in each 617 

experiment. (D) Expression of MPCPsV:RFP together with either Sar1:GFP (i and ii) or 618 

Sar1[H74L]:GFP (iii and iv). RFP channel is shown in magenta and callose staining is 619 

showed in yellow. The images (ii) and (iv) (scale bar, 5 µm) show enlargements of the 620 

framed tissue regions indicated in (i) and (ii) (scale bar, 10 µm); arrowheads indicate PD; 621 

arrows indicate tubule-like structures at PD. Immunoblots (v) show protein expression 622 

levels in each experiment  623 

FIG.3. Fluorescence protein orientation affects MPCPsV movement activity and 624 

cleavage. (A) (Left) Representative images of N. benthamiana leaves showing the 625 

development of TMVΔCPΔMP-GFP infection foci at 5 dpai in the presence of either 626 

GFP:MPCPsV, MPCPsV:GFP or GFP (negative control). Scale bar, 10 mm. (Right) Analysis 627 

of the sizes of infection foci shown in (A). Letters above columns indicate statistical 628 

differences (P<0,01). (B) Immunoblot with anti-GFP antibody. The upper band corresponds 629 

to the full-length fusion protein; asterisks indicate the presence of additional GFP-630 

containing proteins. Molecular masses are indicated on the right of the immunoblot. (C) 631 

(Top) Schematic representation of the predicted chloroplast transit peptide (cTP) at the N-632 

terminal end of MPCPsV; (bottom) subcellular localization of MPCPsV:GFP (upper panel 633 

yellow) and GFP:MPCPsV (lower panel yellow) in relation to the chloroplasts 634 

(autofluorescence, in red). Scale bar, 10 µm. 635 

FIG. 4. MPCPsV encodes an aspartic protease motif. (A) Immunoblot analysis of healthy 636 

and CPsV infected N. occidentalis P1 plants using anti-MPCPsV (anti-54) serum. Molecular 637 

masses of virus-specific bands are indicated on the right of the immunoblot. (B) (i) (Top) 638 

Representation of part of the aminoacids sequence of the MPCPsV aligning the aspartic 639 

protease domain with the respective domains in Cathepsin D (PDB structure ID: 4Od9_A) 640 

and HIV-2 protease (PDB structure ID: 3ec0_A) , the catalytic D residue is underlined in 641 
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each case. (Bottom) Alignment of the aminoacid sequences of HIV protease substrate 642 

peptides against the aminoacid sequence of MPCPsV. The specific HIV protease cleavage 643 

releases specific proteins; MA, matrix; CA, capsid; NC, nucleocapsid; TF, trans-frame 644 

peptide; PR, protease; AutoP, auto proteolysis site; RT, reverse transcriptase; RH, RNAse 645 

H; IN, integrase. Cleavage site is indicated with an “|”. (ii and iii) Representation of part of 646 

the aminoacids sequence of the MPMiLBVVand MPBLMaV respectively, aligning the aspartic 647 

protease domain with the respective domains in Cathepsin D (PDB structure ID: 4Od9_A) 648 

and aspartic protease (PDB structure ID: 3LIY_D). The catalytic D residue is underlined. 649 

(C) MS/MS spectra showing the ions matching with 54K derived peptides indicated at the 650 

bottom of each spectra. (i) Spectra of the peptide KSVSINLSNFL corresponding to the C-651 

terminal end of the 34K fragment and (ii), spectra of the peptide ADQRRAPPPPQLEKR 652 

corresponding to the N-terminal end of the 20K protein. MS/MS counts and PEP values are 653 

indicated. (D) MPCPsV mutants used in this work. Aminoacid repleacements are indicated 654 

underlined. (E) Immunoblot of protein extracts of N. benthamiana tissues transiently 655 

expressing either RFP, MPCPsV:RFP, MPCPsVD340A:RFP, MPCPsVD340N:RFP, 656 

34KCPsV:RFP, 20KCPsV:RFP, MPCPsVL310D:RFP, MPCPsVA311D:RFP, MPCPsVA311R:RFP 657 

or MPCPsVA311H:RFP with anti-RFP monoclonal antibody. Molecular masses are indicated 658 

on the left of the immunoblot. 659 

FIG. 5. Subcellular localizations of MPCPsVmutants. Co-expression of PDCB1:Cherry 660 

with together with (A) MPCPsV:GFP, (B) MPCPsVD340A:GFP, (C) MPCPsVD340N:GFP (D) 661 

34KCPsV:GFP or (E) 20KCPsV:GFP in N. benthamiana epidermal cells at 3 dpai. The patterns 662 

of GFP fluorescence (yellow), Cherry fluorescence (magenta), and chloroplast 663 

autofluorescence (red) are shown. Arrows indicate locations of tubule-like structures at PD; 664 

arrowheads GFP-fluorescent PD without tubules; white rectangles, chloroplasts; Nu, 665 

nucleus. Scale bar, 20 µm.  666 

FIG. 6. 20KCPsVcleavage product retains the aspartic protease activity.(A) FRET-FLIM 667 

measurements of N. benthamiana epidermal cells expressing (i) 20KCPsV:GFP either alone 668 

or together with (ii) RFP or (iii) 20KCPsV:RFP. Fluorescent intensity images (top) are 669 

combined with fluorescence lifetime images (bottom) showing lifetime in false color code 670 

according to the color scale on the left. Scale bar, 10 µm. A representative fluorescence 671 
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lifetime analysis based on two independent replicate experiments is shown (iv and v), in 672 

which the lifetime was measured in the nucleus (iv) and cytoplasm (v). τ, fluorescent 673 

lifetime (ns); SD, standard deviation; N, number of nucleus or cytoplasm analyzed. 674 

Asterisks represent significant differences compared to 20KCPsV:GFP expressed alone 675 

(P<0,01). (B) Immunoblot analysis of N. benthamiana plants expressing 676 

MPCPsVD340A:GFP either alone or in combination with MPCPsV:RFP or 20KCPsV:RFP. Top 677 

panel, anti-RFP antibody; bottom panel, anti-GFP antibody. Arrows indicate the fragment 678 

produced by in trans proteolytic processing of MPCPsVD340A:GFP by either MPCPsV:RFP 679 

(left) or 20KCPsV:RFP (right). (C) Expression of MPCPsVD340A:GFP (yellow) together with 680 

(i) MPCPsV:RFP (magenta) or (ii) with 20KCPsV:RFP (magenta) in N. benthamiana leaves at 681 

3 dpai. Arrowheads indicate tubule-like structures at PD. Scale bar, 10 µm.   682 

FIG. 7. Virus movement activity of MPCPsV mutants. (A) Representative images 683 

showing TMVΔCPΔMP-GFP infection foci at 5 dpai in N. benthamiana leaves expressing 684 

the indicated protein. Scale bar, 10 mm. (B) Size of infection foci in the presence of 685 

indicated proteins measured at 5 dpai. Each letter indicates protein treatments with 686 

statistical differences between them (P<0,01). (C) Size distribution of the infection foci 687 

according to specific treatment at 5 dpai.  688 

FIG. 8. 34KCPsV-PDLP interaction is necessary for tubule formation at PD. A) FRET-689 

FLIM measurements of N. benthamiana epidermal cells expressing (i) 34KCPsV:GFP either 690 

alone, or together with (ii) PDCB1:Cherry, (iii) 34KCPsV:RFP, or (iv) PDLP1:RFP. 691 

Fluorescent intensity images (top) are combined with GFP fluorescence lifetime images 692 

(bottom) indicating lifetime in false color code according to the scale on the left. Scale bar, 693 

10 µm. Lifetime analysis (v): τ, fluorescent lifetime (ns); SD, standard deviation; n, number 694 

of cells analyzed. Asterisks represent a significant reduction in GFP fluorescence lifetime 695 

(P<0,01) compared to 34KCPsV:GFP. (B) Expression of 34KCPsV:RFP together with 696 

Sar1:GFP (i and ii) or with Sar1[H74L]:GFP (iii and iv). RFP channel is shown in magenta 697 

and callose staining is showed in yellow. The images (ii) and (iv) (scale bar, 5 µm) are 698 

enlargements of the framed leaf regions shown in (i) and (ii) (scale bar, 10 µm); 699 

arrowheads, PD; arrows, tubule-like structures at PD. Immunoblot analysis showing protein 700 

expression levels (v). 701 
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TABLE 1. MP
CPsV

 tubule formation upon inhibition of the secretory pathway 

 MPCPsV:RFP + Sar1:GFP  MPCPsV:RFP + Sar1[H74L]:GFP 
 N° of fields 

with tubule-

like 

structures at 

PD 

N° of fields 

without tubule-

like structures 

at PD 

N° of 

fields 

observed 

% of fields 

with tubule-

like structures 

at PD 

 N° of fields 

with tubule-

like structures 

at PD 

N° of fields 

without tubule-

like structures 

at PD 

N° of 

fields 

observed 

% of fields 

with tubule-

like structures 

at PD 

Assay 1 1 37 38 2,6  0 38 38 0 

Assay 2 0 44 44 0  0 40 40 0 

Assay 3 3 47 50 6  0 52 52 0 

Total 4 128 132 3*  0 130 130 0 

*represent statistical difference compered to Sar [H74L] unpaired t-test with p<0,01. 
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TABLE 2. 34K
CPsV

 tubule formation upon inhibition of the secretory pathway 

 34KCPsV:RFP + Sar1:GFP  34KCPsV:RFP + Sar1[H74L]:GFP 
 N° of fields 

with tubule-

like 

structures at 

PD 

N° of fields 

without tubule-

like structures 

at PD 

N° of 

fields 

observed 

% of fields 

with tubule-

like structures 

at PD 

 N° of fields 

with tubule-

like structures 

at PD 

N° of fields 

without tubule-

like structures 

at PD 

N° of 

fields 

observed 

% of fields 

with tubule-

like structures 

at PD 

Assay 1 9 13 22 41  1 22 23 4 

Assay 2 11 12 23 48  4 18 22 18 

Assay 3 18 4 22 82  1 15 16 6 

Total 38 29 67 57*  6 55 61 10 

*represent statistical difference compered to Sar [H74L] unpaired t-test with p<0,05. 
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