163 research outputs found

    Electron transport and optical emissions in the aurora

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 1987A one-dimensional, steady state auroral model is developed based on a linear electron transport calculation. A set of cross sections for electron neutral collisions describing elastic scattering, energy loss, and photon emission is compiled and used in conjunction with a discrete ordinate transport code. Calculated electron intensities are compared with in situ rocket measurements. Auroral optical emissions that result from direct electron impact on neutrals are calculated for synthetic and observed electron spectra. A systematic dependence of the brightness of auroral features on energy flux, characteristic energy, and atmospheric composition is found and parameterized. A method for interpreting the brightness and the ratio of brightnesses of certain auroral emissions in terms of the energy flux, characteristic energy, and relative oxygen density is described. Application of this method to auroral images acquired by nadir viewing instruments aboard a satellite is discussed and the distribution of energy flux, characteristic energy, and ionospheric conductances over the auroral oval is determined. Emissions that are suitable for analysing auroral spectra in terms of the atomic oxygen abundance in the auroral zone are identified

    Electrodynamics of an omega-band as deduced from optical and magnetometer data

    Get PDF
    We investigate an omega-band event that took place above northern Scandinavia around 02:00–02:30 UT on 9 March 1999. In our analysis we use ground based magnetometer, optical and riometer measurements together with satellite based optical images. The optical and riometer data are used to estimate the ionospheric Hall and Pedersen conductances, while ionospheric equivalent currents are obtained from the magnetometer measurements. These data sets are used as input in a local KRM calculation, which gives the ionospheric potential electric field as output, thus giving us a complete picture of the ionospheric electrodynamic state during the omega-band event. <br><br> The overall structure of the electric field and field-aligned current (FAC) provided by the local KRM method are in good agreement with previous studies. Also the <I><B>E</B></I>&times;<I><B>B</B></I> drift velocity calculated from the local KRM solution is in good qualitative agreement with the plasma velocity measured by the Finnish CUTLASS radar, giving further support for the new local KRM method. The high-resolution conductance estimates allow us to discern the detailed structure of the omega-band current system. The highest Hall and Pedersen conductances, ~50 and ~25 S, respectively, are found at the edges of the bright auroral tongue. Inside the tongue, conductances are somewhat smaller, but still significantly higher than typical background values. The electric field shows a converging pattern around the tongues, and the field strength drops from ~40 mV/m found at optically dark regions to ~10 mV/m inside the areas of enhanced conductivity. Downward FAC flow in the dark regions, while upward currents flow inside the auroral tongue. Additionally, sharp conductance gradients at the edge of an auroral tongue are associated with narrow strips of intense FACs, so that a strip of downward current flows at the eastern (leading) edge and a similar strip of upward current is present at the western (trailing) edge. The Joule heating follows the electric field pattern, so that it is diminished inside the bright auroral tongue

    Strict irreducibility of Markov kernels and ergodicity of step skew products

    Full text link
    We consider step skew products arising from bundles of measure preserving transformations, which act on a common probability space and are chosen at random by a stationary ergodic Markov chain. In many contexts it is desirable to know whether ergodicity of the bundle implies ergodicity of the skew product. Introducing the notion of strict irreducibility for Markov kernels we shall characterize the class of Markov chains for which the aforementioned implication holds true. We thereby extend a sufficient condition of Bufetov for the case of finite state Markov chains to general state spaces and show that it is in fact also necessary. As an application we obtain an explicit description of the limit in ergodic theorems for random dynamical systems of Markov type.Comment: main results extended from countable state spaces to arbitrary state spaces, title changed accordingly, one author added (P.L.), 20 page

    Observation of O+ 4P-4D0 lines in proton aurora over Svalbard

    Get PDF
    Spectra of a proton aurora event show lines of O+ 4P-4D0 multiplet (4639–4696 Å) enhanced relative to the N2 +1N(0,2) compared to normal electron aurora. Conjugate satellite particle measurements are used as input to electron and proton transport models, to show that p/H precipitation is the dominant source of both the O+ and N2 +1N emissions. The emission cross-section of the multiplet in p collisions with O and O2 estimated from published work does not explain the observed O+ brightness, suggesting a higher emission cross-section for low energy p impact on O

    Identification of Compatible and Incompatible Interactions Between Arabidopsis thaliana

    Full text link

    The dynamic cusp at low altitudes: A case study combining Viking, DMSP, and Sondrestrom incoherent scatter radar observations

    Get PDF
    A case study involving data from three satellites and a ground-based radar are presented. Focus is on a detailed discussion of observations of the dynamic cusp made on 24 Sep. 1986 in the dayside high-latitude ionosphere and interior magnetosphere. The relevant data from space-borne and ground-based sensors is presented. They include in-situ particle and field measurements from the DMSP-F7 and Viking spacecraft and Sondrestrom radar observations of the ionosphere. These data are augmented by observations of the IMF and the solar wind plasma. The observations are compared with predictions about the ionospheric response to the observed particle precipitation, obtained from an auroral model. It is shown that observations and model calculations fit well and provide a picture of the ionospheric footprint of the cusp in an invariant latitude versus local time frame. The combination of Viking, Sondrestrom radar, and IMP-8 data suggests that we observed an ionospheric signature of the dynamic cusp. Its spatial variation over time which appeared closely related to the southward component of the IMF was monitored

    Magnetospheric reconnection driven by solar wind pressure fronts

    Get PDF
    International audienceRecent work has shown that solar wind dynamic pressure changes can have a dramatic effect on the particle precipitation in the high-latitude ionosphere. It has also been noted that the preexisting interplanetary magnetic field (IMF) orientation can significantly affect the resulting changes in the size, location, and intensity of the auroral oval. Here we focus on the effect of pressure pulses on the size of the auroral oval. We use particle precipitation data from up to four Defense Meteorological Satellite Program (DMSP) spacecraft and simultaneous POLAR Ultra-Violet Imager (UVI) images to examine three events of solar wind pressure fronts impacting the magnetosphere under two IMF orientations, IMF strongly southward and IMF Bz nearly zero before the pressure jump. We show that the amount of change in the oval and polar cap sizes and the local time extent of the change depends strongly on IMF conditions prior to the pressure enhancement. Under steady southward IMF, a remarkable poleward widening of the oval at all magnetic local times and shrinking of the polar cap are observed after the increase in solar wind pressure. When the IMF Bz is nearly zero before the pressure pulse, a poleward widening of the oval is observed mostly on the nightside while the dayside remains unchanged. We interpret these differences in terms of enhanced magnetospheric reconnection and convection induced by the pressure change. When the IMF is southward for a long time before the pressure jump, open magnetic flux is accumulated in the tail and strong convection exists in the magnetosphere. The compression results in a great enhancement of reconnection across the tail which, coupled with an increase of magnetospheric convection, leads to a dramatic poleward expansion of the oval at all MLTs (dayside and nightside). For near-zero IMF Bz before the pulse the open flux in the tail, available for closing through reconnection, is smaller. This, in combination with the weaker magnetospheric convection, leads to a more limited poleward expansion of the oval, mostly on the nightside. Key words. Magnetospheric physics (solar windmagnetosphere interactions; magnetospheric configuration and dynamics; auroral phenomena
    corecore