86 research outputs found

    Obesity‐Related Hormones in Low‐Income Preschool‐Age Children: Implications for School Readiness

    Full text link
    Mechanisms underlying socioeconomic disparities in school readiness and health outcomes, particularly obesity, among preschool‐aged children are complex and poorly understood. Obesity can induce changes in proteins in the circulation that contribute to the negative impact of obesity on health; such changes may relate to cognitive and emotion regulation skills important for school readiness. We investigated obesity‐related hormones, body mass index ( BMI ), and school readiness in a pilot study of low‐income preschoolers attending Head Start (participating in a larger parent study). We found that the adipokine leptin was related to preschoolers' BMI z ‐score, the appetite‐regulating hormones ghrelin and glucagon‐like peptide 1 ( GLP ‐1), and pro‐inflammatory cytokines typically associated with early life stress; and that some of these obesity‐related biomarkers were in turn related to emotion regulation. Future work should evaluate how obesity may affect multiple domains of development, and consider modeling common physiological pathways related to stress, health, and school readiness.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101799/1/mbe12034.pd

    Phenotypic Switching of Adipose Tissue Macrophages With Obesity Is Generated by Spatiotemporal Differences in Macrophage Subtypes

    Get PDF
    OBJECTIVE—To establish the mechanism of the phenotypic switch of adipose tissue macrophages (ATMs) from an alternatively activated (M2a) to a classically activated (M1) phenotype with obesity

    Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation.

    Get PDF
    Chronic low-grade inflammation is emerging as a pathogenic link between obesity and metabolic disease. Persistent immune activation in white adipose tissue (WAT) impairs insulin sensitivity and systemic metabolism, in part, through the actions of proinflammatory cytokines. Whether obesity engages an adaptive mechanism to counteract chronic inflammation in adipose tissues has not been elucidated. Here we identified otopetrin 1 (Otop1) as a component of a counterinflammatory pathway that is induced in WAT during obesity. Otop1 expression is markedly increased in obese mouse WAT and is stimulated by tumor necrosis factor-α in cultured adipocytes. Otop1 mutant mice respond to high-fat diet with pronounced insulin resistance and hepatic steatosis, accompanied by augmented adipose tissue inflammation. Otop1 attenuates interferon-γ (IFN-γ) signaling in adipocytes through selective downregulation of the transcription factor STAT1. Using a tagged vector, we found that Otop1 physically interacts with endogenous STAT1. Thus, Otop1 defines a unique target of cytokine signaling that attenuates obesity-induced adipose tissue inflammation and plays an adaptive role in maintaining metabolic homeostasis in obesity

    A subcutaneous adipose tissue-liver signalling axis controls hepatic gluconeogenesis.

    Get PDF
    The search for effective treatments for obesity and its comorbidities is of prime importance. We previously identified IKK-ε and TBK1 as promising therapeutic targets for the treatment of obesity and associated insulin resistance. Here we show that acute inhibition of IKK-ε and TBK1 with amlexanox treatment increases cAMP levels in subcutaneous adipose depots of obese mice, promoting the synthesis and secretion of the cytokine IL-6 from adipocytes and preadipocytes, but not from macrophages. IL-6, in turn, stimulates the phosphorylation of hepatic Stat3 to suppress expression of genes involved in gluconeogenesis, in the process improving glucose handling in obese mice. Preliminary data in a small cohort of obese patients show a similar association. These data support an important role for a subcutaneous adipose tissue-liver axis in mediating the acute metabolic benefits of amlexanox on glucose metabolism, and point to a new therapeutic pathway for type 2 diabetes

    CD40 promotes MHC class II expression on adipose tissue macrophages and regulates adipose tissue CD4+ T cells with obesity

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142158/1/jlb1107-sup-0002.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142158/2/jlb1107-sup-0003.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142158/3/jlb1107.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142158/4/jlb1107-sup-0001.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142158/5/jlb1107-sup-0004.pd

    Frontline Science: Rapid adipose tissue expansion triggers unique proliferation and lipid accumulation profiles in adipose tissue macrophages

    Full text link
    Obesityâ related changes in adipose tissue leukocytes, in particular adipose tissue macrophages (ATMs) and dendritic cells (ATDCs), are implicated in metabolic inflammation, insulin resistance, and altered regulation of adipocyte function. We evaluated stromal cell and white adipose tissue (WAT) expansion dynamics with high fat diet (HFD) feeding for 3â 56 days, quantifying ATMs, ATDCs, endothelial cells (ECs), and preadipocytes (PAs) in visceral epididymal WAT and subcutaneous inguinal WAT. To better understand mechanisms of the early response to obesity, we evaluated ATM proliferation and lipid accumulation. ATMs, ATDCs, and ECs increased with rapid WAT expansion, with ATMs derived primarily from a CCR2â independent resident population. WAT expansion stimulated proliferation in resident ATMs and ECs, but not CD11c+ ATMs or ATDCs. ATM proliferation was unperturbed in Csf2â and Rag1â deficient mice with WAT expansion. Additionally, ATM apoptosis decreased with WAT expansion, and proliferation and apoptosis reverted to baseline with weight loss. Adipocytes reached maximal hypertrophy at 28 days of HFD, coinciding with a plateau in resident ATM accumulation and the appearance of lipidâ laden CD11c+ ATMs in visceral epididymal WAT. ATM increases were proportional to tissue expansion and adipocyte hypertrophy, supporting adipocyteâ mediated regulation of resident ATMs. The appearance of lipidâ laden CD11c+ ATMs at peak adipocyte size supports a role in responding to ectopic lipid accumulation within adipose tissue. In contrast, ATDCs increase independently of proliferation and may be derived from circulating precursors. These changes precede and establish the setting in which largeâ scale adipose tissue infiltration of CD11c+ ATMs, inflammation, and adipose tissue dysfunction contributes to insulin resistance.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142947/1/jlb10097_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142947/2/jlb10097.pd

    Weight Regain in Formerly Obese Mice Hastens Development of Hepatic Steatosis Due to Impaired Adipose Tissue Function

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155467/1/oby22788-sup-0001-Supinfo.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155467/2/oby22788_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155467/3/oby22788.pd
    corecore