7 research outputs found

    H3K27ac acetylome signatures reveal the epigenomic reorganization in remodeled non-failing human hearts

    Get PDF
    BACKGROUND: H3K27ac histone acetylome changes contribute to the phenotypic response in heart diseases, particularly in end-stage heart failure. However, such epigenetic alterations have not been systematically investigated in remodeled non-failing human hearts. Therefore, valuable insight into cardiac dysfunction in early remodeling is lacking. This study aimed to reveal the acetylation changes of chromatin regions in response to myocardial remodeling and their correlations to transcriptional changes of neighboring genes. RESULTS: We detected chromatin regions with differential acetylation activity (DARs; Padj. < 0.05) between remodeled non-failing patient hearts and healthy donor hearts. The acetylation level of the chromatin region correlated with its RNA polymerase II occupancy level and the mRNA expression level of its adjacent gene per sample. Annotated genes from DARs were enriched in disease-related pathways, including fibrosis and cell metabolism regulation. DARs that change in the same direction have a tendency to cluster together, suggesting the well-reorganized chromatin architecture that facilitates the interactions of regulatory domains in response to myocardial remodeling. We further show the differences between the acetylation level and the mRNA expression level of cell-type-specific markers for cardiomyocytes and 11 non-myocyte cell types. Notably, we identified transcriptome factor (TF) binding motifs that were enriched in DARs and defined TFs that were predicted to bind to these motifs. We further showed 64 genes coding for these TFs that were differentially expressed in remodeled myocardium when compared with controls. CONCLUSIONS: Our study reveals extensive novel insight on myocardial remodeling at the DNA regulatory level. Differences between the acetylation level and the transcriptional level of cell-type-specific markers suggest additional mechanism(s) between acetylome and transcriptome. By integrating these two layers of epigenetic profiles, we further provide promising TF-encoding genes that could serve as master regulators of myocardial remodeling. Combined, our findings highlight the important role of chromatin regulatory signatures in understanding disease etiology

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    Get PDF
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies

    Identifying adults at high-risk for change in weight and BMI in England: a longitudinal, large-scale, population-based cohort study using electronic health records

    No full text
    Background: Targeted obesity prevention policies would benefit from the identification of population groups with the highest risk of weight gain. The relative importance of adult age, sex, ethnicity, geographical region, and degree of social deprivation on weight gain is not known. We aimed to identify high-risk groups for changes in weight and BMI using electronic health records (EHR). Methods: In this longitudinal, population-based cohort study we used linked EHR data from 400 primary care practices (via the Clinical Practice Research Datalink) in England, accessed via the CALIBER programme. Eligible participants were aged 18–74 years, were registered at a general practice clinic, and had BMI and weight measurements recorded between Jan 1, 1998, and June 30, 2016, during the period when they had eligible linked data with at least 1 year of follow-up time. We calculated longitudinal changes in BMI over 1, 5, and 10 years, and investigated the absolute risk and odds ratios (ORs) of transitioning between BMI categories (underweight, normal weight, overweight, obesity class 1 and 2, and severe obesity [class 3]), as defined by WHO. The associations of demographic factors with BMI transitions were estimated by use of logistic regression analysis, adjusting for baseline BMI, family history of cardiovascular disease, use of diuretics, and prevalent chronic conditions. Findings: We included 2 092 260 eligible individuals with more than 9 million BMI measurements in our study. Young adult age was the strongest risk factor for weight gain at 1, 5, and 10 years of follow-up. Compared with the oldest age group (65–74 years), adults in the youngest age group (18–24 years) had the highest OR (4·22 [95% CI 3·86–4·62]) and greatest absolute risk (37% vs 24%) of transitioning from normal weight to overweight or obesity at 10 years. Likewise, adults in the youngest age group with overweight or obesity at baseline were also at highest risk to transition to a higher BMI category; OR 4·60 (4·06–5·22) and absolute risk (42% vs 18%) of transitioning from overweight to class 1 and 2 obesity, and OR 5·87 (5·23–6·59) and absolute risk (22% vs 5%) of transitioning from class 1 and 2 obesity to class 3 obesity. Other demographic factors were consistently less strongly associated with these transitions; for example, the OR of transitioning from normal weight to overweight or obesity in people living in the most socially deprived versus least deprived areas was 1·23 (1·18–1·27), for men versus women was 1·12 (1·08–1·16), and for Black individuals versus White individuals was 1·13 (1·04–1·24). We provide an open access online risk calculator, and present high-resolution obesity risk charts over a 1-year, 5-year, and 10-year follow-up period. Interpretation: A radical shift in policy is required to focus on individuals at the highest risk of weight gain (ie, young adults aged 18–24 years) for individual-level and population-level prevention of obesity and its long-term consequences for health and health care. Funding: The British Hearth Foundation, Health Data Research UK, the UK Medical Research Council, and the National Institute for Health Research. © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    The genomics of heart failure: design and rationale of the HERMES consortium

    No full text
    Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure.Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 x 10(-8) under an additive genetic model.Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction

    The genomics of heart failure: design and rationale of the HERMES consortium

    No full text
    Aims The HERMES (HEart failure Molecular Epidemiology for Therapeutic targets) consortium aims to identify the genomic and molecular basis of heart failure.Methods and results The consortium currently includes 51 studies from 11 countries, including 68 157 heart failure cases and 949 888 controls, with data on heart failure events and prognosis. All studies collected biological samples and performed genome-wide genotyping of common genetic variants. The enrolment of subjects into participating studies ranged from 1948 to the present day, and the median follow-up following heart failure diagnosis ranged from 2 to 116 months. Forty-nine of 51 individual studies enrolled participants of both sexes; in these studies, participants with heart failure were predominantly male (34-90%). The mean age at diagnosis or ascertainment across all studies ranged from 54 to 84 years. Based on the aggregate sample, we estimated 80% power to genetic variant associations with risk of heart failure with an odds ratio of >1.10 for common variants (allele frequency > 0.05) and >1.20 for low-frequency variants (allele frequency 0.01-0.05) at P < 5 x 10(-8) under an additive genetic model.Conclusions HERMES is a global collaboration aiming to (i) identify the genetic determinants of heart failure; (ii) generate insights into the causal pathways leading to heart failure and enable genetic approaches to target prioritization; and (iii) develop genomic tools for disease stratification and risk prediction

    Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure

    No full text
    Heart failure (HF) is a leading cause of morbidity and mortality worldwide. A small proportion of HF cases are attributable to monogenic cardiomyopathies and existing genome-wide association studies (GWAS) have yielded only limited insights, leaving the observed heritability of HF largely unexplained. We report results from a GWAS meta-analysis of HF comprising 47,309 cases and 930,014 controls. Twelve independent variants at 11 genomic loci are associated with HF, all of which demonstrate one or more associations with coronary artery disease (CAD), atrial fibrillation, or reduced left ventricular function, suggesting shared genetic aetiology. Functional analysis of non-CAD-associated loci implicate genes involved in cardiac development (MYOZ1, SYNPO2L), protein homoeostasis (BAG3), and cellular senescence (CDKN1A). Mendelian randomisation analysis supports causal roles for several HF risk factors, and demonstrates CAD-independent effects for atrial fibrillation, body mass index, and hypertension. These findings extend our knowledge of the pathways underlying HF and may inform new therapeutic strategies.Cardiolog
    corecore