110 research outputs found

    Dissipation due to tunneling two-level systems in gold nanomechanical resonators

    Full text link
    We present measurements of the dissipation and frequency shift in nanomechanical gold resonators at temperatures down to 10 mK. The resonators were fabricated as doubly-clamped beams above a GaAs substrate and actuated magnetomotively. Measurements on beams with frequencies 7.95 MHz and 3.87 MHz revealed that from 30 mK to 500 mK the dissipation increases with temperature as T0.5T^{0.5}, with saturation occurring at higher temperatures. The relative frequency shift of the resonators increases logarithmically with temperature up to at least 400 mK. Similarities with the behavior of bulk amorphous solids suggest that the dissipation in our resonators is dominated by two-level systems

    Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator

    Get PDF
    We present results from a study of the nonlinear intermodal coupling between different flexural vibrational modes of a single high-stress, doubly-clamped silicon nitride nanomechanical beam. The measurements were carried out at 100 mK and the beam was actuated using the magnetomotive technique. We observed the nonlinear behavior of the modes individually and also measured the coupling between them by driving the beam at multiple frequencies. We demonstrate that the different modes of the resonator are coupled to each other by the displacement induced tension in the beam, which also leads to the well known Duffing nonlinearity in doubly-clamped beams.Comment: 15 pages, 7 figure

    Evidence for the role of normal-state electrons in nanoelectromechanical damping mechanisms at very low temperatures

    Get PDF
    We report on experiments performed at low temperatures on aluminum covered silicon nanoelectromechanical resonators. The substantial difference observed between the mechanical dissipation in the normal and superconducting states measured within the same device unambiguously demonstrates the importance of normal-state electrons in the damping mechanism. The dissipative component becomes vanishingly small at very low temperatures in the superconducting state, leading to exceptional values for the quality factor of such small silicon structures. A critical discussion is given within the framework of the standard tunneling model

    Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator

    Get PDF
    We have measured the interaction between 4^4He gas at 4.2 ~K and a high-quality nano-electro-mechanical string device for its first 3 symmetric modes (resonating at 2.2 ~MHz, 6.7 ~MHz and 11 ~MHz with quality factor Q>0.1Q > 0.1 million) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost-ideal monoatomic and inert gas which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage, down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free-path is of the order of the distance between the suspended nano-mechanical probe and the bottom of the trench we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and Monte-Carlo DSMC simulations)

    Audio mixing in a tri-port nano-electro-mechanical device

    Full text link
    We report on experiments performed on a cantilever-based tri-port nano-electro-mechanical (NEMS) device. Two ports are used for actuation and detection through the magnetomotive scheme, while the third port is a capacitively coupled gate electrode. By applying a low frequency voltage signal on the gate, we demonstrate mixing in the mechanical response of the device, even for {\it low magnetomotive drives, without resorting to conduction measurements through the NEMS}. The technique can thus be used in particular in the linear regime, as an alternative to nonlinear mixing, for normal conducting devices. An analytic theory is presented reproducing the data without free parameter

    Improving accuracy of nanothermal measurements via spatially distributed scanning thermal microscope probes

    Get PDF
    Advances in material design and device miniaturization lead to physical properties that may significantly differ from the bulk ones. In particular, thermal transport is strongly affected when the device dimensions approach the mean free path of heat carriers. Scanning Thermal Microscopy (SThM) is arguably the best approach for probing nanoscale thermal properties with few tens of nm lateral resolution. Typical SThM probes based on microfabricated Pd resistive probes (PdRP) using a spatially distributed heater and a nanoscale tip in contact with the sample provide high sensitivity and operation in ambient, vacuum, and liquid environments. Although some aspects of the response of this sensor have been studied, both for static and dynamic measurements, here we build an analytical model of the PdRP sensor taking into account finite dimensions of the heater that improves the precision and stability of the quantitative measurements. In particular, we analyse the probe response for heat flowing through a tip to the sample and due to probe selfheating and theoretically and experimentally demonstrate that they can differ by more than 50%, hence introducing significant correction in the SThM measurements. Furthermore, we analyzed the effect of environmental parameters such as sample and microscope stage temperatures and laser illumination, which allowed reducing the experimental scatter by a factor of 10. Finally, varying these parameters, we measured absolute values of heat resistances and compared these to the model for both ambient and vacuum SThM operations, providing a comprehensive pathway improving the precision of the nanothermal measurements in SThM

    Universality of thermal transport in amorphous nanowires at low temperatures

    Get PDF
    Thermal transport properties of amorphous materials at low temperatures are governed by the interaction between phonons and localized excitations referred to as tunneling two-level systems (TLSs). The temperature variation of the thermal conductivity of these amorphous materials is considered as universal and is characterized by a quadratic power law. This is well described by the phenomenological TLS model even though its microscopic explanation is still elusive. Here, by scaling down to the nanometer-scale amorphous systems much below the bulk phonon-TLS mean free path, we probe the robustness of that model in restricted geometry systems. Using very sensitive thermal conductance measurements, we demonstrate that the temperature dependence of the thermal conductance of silicon nitride nanostructures remains mostly quadratic independently of the nanowire section. It does not follow the cubic power law in temperature as expected in a Casimir-Ziman regime of boundary-limited thermal transport. This shows a thermal transport counterintuitively dominated by phonon-TLS interactions and not by phonon boundary scattering in the nanowires. This could be ascribed to an unexpected high density of TLSs on the surfaces which still dominates the phonon diffusion processes at low temperatures and explains why the universal quadratic temperature dependence of thermal conductance still holds for amorphous nanowires
    corecore