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Universality of thermal transport in amorphous nanowires at low temperatures
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Thermal transport properties of amorphous materials at low temperatures are governed by the interaction
between phonons and localized excitations referred to as tunneling two-level systems (TLSs). The temperature
variation of the thermal conductivity of these amorphous materials is considered as universal and is characterized
by a quadratic power law. This is well described by the phenomenological TLS model even though its microscopic
explanation is still elusive. Here, by scaling down to the nanometer-scale amorphous systems much below the bulk
phonon-TLS mean free path, we probe the robustness of that model in restricted geometry systems. Using very
sensitive thermal conductance measurements, we demonstrate that the temperature dependence of the thermal
conductance of silicon nitride nanostructures remains mostly quadratic independently of the nanowire section. It
does not follow the cubic power law in temperature as expected in a Casimir-Ziman regime of boundary-limited
thermal transport. This shows a thermal transport counterintuitively dominated by phonon-TLS interactions and
not by phonon boundary scattering in the nanowires. This could be ascribed to an unexpected high density of
TLSs on the surfaces which still dominates the phonon diffusion processes at low temperatures and explains why
the universal quadratic temperature dependence of thermal conductance still holds for amorphous nanowires.
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Amorphous materials may have significant dispersion in
their chemical compositions or their physical structures at the
microscopic level. However, at low temperatures, the behavior
of the thermal properties of almost all amorphous materials is
thought to be universal [1]. These common features include
a nearly linear specific heat and a nearly quadratic thermal
conductivity in temperature below a few kelvins. As thermal
transport is concerned, this universality is not only qualitative
but also quantitative; indeed the thermal conductivity of all
amorphous materials lies within a factor of twenty in the same
order of magnitude called the glassy range [2,3]. Despite much
theoretical effort, this universality remains poorly understood
and its true microscopic origin is still elusive. Nowadays, the
most accepted model is based on the presence of tunneling two-
level systems (TLSs) involving tunneling between different
equilibrium positions of an atom or group of atoms [4–6].
The scatterings of the phonons on these tunneling sites is
assumed to be at the origin of the quadratic variation of thermal
conductance in temperature. The phonon heat transport is then
characterized by the phonon-TLS mean free path (MFP; the
distance between two inelastic collisions), which is on the
order of a few hundred micrometers.

Phillips suggested that TLSs are likely to form in materials
with an open structure and low-coordination regions, and
are unlikely in highly dense amorphous systems [4]. Recent
experiments give indication of the correlation between the
low-density regions, the presence of nanovoids, and the
presence of TLSs [7,8]. In the opposite case the different
experiments based on hydrogenated Si [9] and ultrastable
glasses [10,11] have shown a significant reduction of the TLS
density and a tendency to be more crystal-like [10–12]. These
results support Phillips’ original suggestion. Understanding
the origin of these localized excitations (or TLSs) is one of
the most challenging problems of modern condensed matter
physics at low temperature. Indeed, many questions have
been raised concerning their existence [13], their fundamental

origins [14], their possible role in the decoherence of quantum
entangled states in Josephson quantum bits [15,16], or their
noise-producing aspects in superconducting resonators [17].
Probing the phonon-TLS scattering through the measure-
ment of the phonon-TLS MFP in low-dimensional samples
(membranes, nanowires) can bring significant insights into the
understanding of thermal transport in amorphous materials at
the nanoscale.

On another hand, in a dielectric single crystal far below the
Debye temperature, the phonon mean free path is set by the
phonon-phonon interaction leading to the well known cubic
power law in temperature of the thermal conductivity [κ(T ) ∝
T 3]. This MFP can be very long at low temperature because the
phonon-phonon interactions become less probable. This leads
to boundary scattering limited transport called the Casimir-
Ziman regime where phonon scattering only appears on the
edges of the materials [18–20]. It has been shown recently that,
at the nanoscale, the thermal transport in single-crystal silicon
nanowires belongs to this regime. Thermal conductance having
variation in temperature very close to the expected cubic power
law has been found [21–24].

Then, the low-temperature thermal transport in amorphous
materials (bulk or very thick film) departs strongly from its
single-crystal counterparts by its universal quadratic thermal
conductivity [1]. This quadratic variation is the distinctive
picture of glassy materials, the bulk phonon MFP being limited
by the phonon-TLS inelastic interactions which lie in the
range of 20 μm < �bulk

ph−T LS < 200 μm, at 1 K [1,4–6,25].
The present experiments, done on glassy systems of restricted
geometries, put into competition the Casimir-Ziman regime
where phonons are essentially scattered by the boundaries
(characterized by a thermal conductance cubic in temperature)
and the amorphous regime where phonons are scattered by
TLSs. The main objective of this work is then to probe phonon
transport in spatially confined systems at the nanoscale, i.e.,
below the characteristic length set by the bulk phonon-TLS
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MFP in amorphous materials �bulk
ph−T LS . This should yield

crucial insights on the location and maybe on the origin of
the TLS in glasses.

Here, we carried out very sensitive thermal conductance
measurements on silicon nitride nanostructures at low temper-
atures. The samples have various dimensions from millimeter
membrane to micro- and nanowires, where the sizes are pur-
posely much smaller than the bulk phonon MFP in amorphous
materials (set by the phonon-TLS interactions). As silicon
nitride is known to be a fully amorphous material, widely used
for its exceptional mechanical and thermal properties [26–32],
it is one of the best materials to study the competition between
phonon boundary scattering and phonon-TLS interactions
playing a significant role in the thermal transport.

The low-temperature thermal properties of Si3N4 have
been already studied by different groups without considering
the possible contribution of TLSs to the phonon scatter-
ing [30,33–35]; however, a little later the problem was raised
by two theoretical works [36–39]. The present experiments
will allow the probing of (1) the phonon-TLS interaction
down to the nanometer scale and (2) its effect on the
power law of the variation of thermal conductance versus
temperature. Unexpectedly, as the Casimir-Ziman regime
should be observed in nanowires through the T 3 behavior of
κ(T ), a robust T 2 is observed, showing that even in restricted
geometry, the phonon-TLS scattering is still governing the heat
transport.

The thermal conductance measurements have been per-
formed on 100 nm thick mechanically suspended stoichiomet-
ric Si3N4 structures from the millimeter scale (membrane) to
the nanometer scale (nanowire) in order to cross the character-
istic length given by �bulk

ph−T LS (see Fig. 1). Various 3ω methods
adapted to each geometry have been used; these different
techniques have been already explained elsewhere [40–42]. All
thermal measurements are done using a niobium nitride (NbN)
thermometry very sensitive over a broad temperature range
(from 0.1 K to 330 K) [43]. The thermal conductance of the
micro- and nanowires is measured using the longitudinal 3ω

technique where the heat flow is along the NbN transducer [see
Fig. 1(a)]. Concerning the membrane, 3ω-Volklein geometry
is used; in this technique the heat flow is perpendicular to
the transducer since this one is deposited in the center of the
membrane [along the long side; see Fig. 1(b)]. Four geometries
of suspended structures have been used for that purpose; all
the dimensions of samples are summarized in Table I.

In Fig. 2(a) the thermal conductance of the nanowire, the
microwires, and the membrane is shown in a log-log plot.
The first point that needs to be highlighted is the similar
quadratic temperature behavior for all the different samples
with a thermal conductance proportional to T 1.5 to T 2. It is
in agreement with the universal behavior of glasses T 1.8, but
far from the cubic behavior expected for the Casimir-Ziman
regime [1,2]. Quantitatively, the conductance of the nanowire
is almost two orders of magnitude below the conductance
of the narrow microwire, and six orders of magnitude below
the conductance of the membrane. This is the consequence
of several concomitant effects: the reduction of the geometry
(boundary scattering) and the reduction of the phonon MFP
due to phonon-TLS interaction that both limit the heat
transport.

FIG. 1. Pictures and schematic representations of the various
Si3N4 suspended structures. The red arrows represent the heat flux, the
blue arrows, the dimensions of these samples. (a) Suspended silicon
nitride nanowire measured with the longitudinal 3ω method [40] (the
microwires are not shown) and (b) experimental configuration of
the silicon nitride membrane measured using the planar 3ω-Volklein
method [41,42]. The blue layer represents the niobium nitride (NbN),
the thin film transducer used for the thermal measurements.

TABLE I. Details of the dimensions of the four different kinds of
samples made out of Si3N4 thin films: sample types and their width
and length (all samples are 100 nm thick). The NbN thermometer is
70 nm thick. The membrane is considered as a semi-infinite sample
(very large aspect ratio), and three samples are reduced in dimensions:
large and narrow microwires and nanowires. More than three orders of
magnitude in sizes are covered by these four samples. The coefficients
ζ0 and �1K

ph, extracted from the thermal conductivity measurements
at 1 K, are necessary for the interpretation of the results.

Sample type w L (μm) ζ0 (W K−3 m−1) �1K
ph (μm)

membrane 1.5 mm 150 1.2 × 10−2 31
large microwire 7 μm 50 9 × 10−3 27
narrow microwire 1 μm 10 3 × 10−4 0.9
nanowire 200 nm 2.5 1.2 × 10−4 0.36
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FIG. 2. (a) The thermal conductance of the membrane (black),
the large microwire (dark green), the narrow microwire (green), and
the nanowire (light green) is shown in a log-log plot. The overall
temperature behavior of the thermal conductance of all these samples
is quite similar. (b) Effective thermal conductivities calculated as
a base for comparison of phonon thermal transport between the
different geometries. As the dimensions are reduced, the thermal
conductivities decrease. The glassy range is represented by the gray
area in the plot.

In order to go deeper in the discussion and compare the
dimensional reduction and TLS effects on phonon scattering
on the thermal transport, one needs to report on thermal
conductance normalized to length and widths [44]. This is
done by calculating the thermal conductivity κ through the
regular expression κ = KL

tw
, where K is the measured thermal

conductance, t the thickness of the materials, and w the width.
This is shown in Fig. 2(b) where, for the same amorphous
materials Si3N4, the thermal conductivities vary significantly
from one geometry to the other, decreasing when the section
of the heat conductor decreases. This illustrates the fact that
the phonon transport is limited by boundary scatterings at
low temperature, the so-called Casimir-Ziman regime of heat
transport [18,19].

Deciphering the intrinsic mechanisms responsible for the
heat transport implies obtaining the most relevant parameter:
the phonon mean free path. In order to extract that crucial
physical parameter from our measurements, one uses the
phenomenological approach developed by Pohl, Liu, and
Thompson [1] to interpret the thermal conductivity data
obtained on bulk amorphous materials. The authors combine

FIG. 3. (a) The thermal conductivity normalized to the square
of the temperature (κ/T 2) in a log-log scale. (b) The phonon mean
free path of the nanowire extracted from Eq. (3). The mean free paths
decrease significantly as the size of the conductor is decreased, a clear
signature of the impact of the low dimensions of the samples on the
heat transport. The glassy range delimited by the gray area represents
the maximum or minimum of the mean free path measured in bulk
amorphous materials (see Ref. [1]).

the well known kinetic relation κ = 1
3cDvs�ph perfectly valid

at low temperature (as long as ballistic transport is not
involved) with the fact that the thermal conductivity κ is
proportional to the square of the temperature as illustrated
in Fig. 3(a):

κ(T ) = ζ0T
2 = 1

3cDvs�ph, (1)

where ζ0 is a phenomenological proportionality factor equal to
the thermal conductivity κ at 1 K; cD is the volumetric specific
heat of the phonons carrying heat; vs is the average speed of
sound, which is 9900 m/s in silicon nitride; and �ph is the
phonon MFP independent of dimensions. ζ0 can be estimated
through the TLS model; however this is not required for the
determination of the phonon MFP. Indeed ζ0 = κT =1K, then
directly extracted from the experiments.

One important fact should be clarified in this approach:
one needs to know the specific heat cD related to phonons
that are carrying heat. This should not be mixed up with
the experimental specific heat of amorphous materials mostly
dominated by the tunneling states [1]. By using the Debye
model for estimating cD , very good agreement is obtained
between experiments and calculations for temperatures down
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to 1 K as demonstrated by Pohl et al. [2,45]. Similarly here
we use the regular Debye expression at low temperature as the
input for the specific heat:

cD = 2

5

k4
B

h̄3

π2

v3
s

T 3. (2)

When combining Eq. (1) and Eq. (2) the phonon MFP can then
be expressed by

�ph = 15h̄3v2
s

2π2k4
B

κ(T )

T 3
. (3)

One can see in Eq. (3) that the MFP is given, not only by the
temperature and the speed of sound, but also by the thermal
conductivity as function of temperature. So, by measuring
thermal conductivity one can have a direct experimental
determination of the MFP as a function of the different sections
of heat conductors. In our analysis, as shown in Fig. 3(a),
we have first checked that the proportionality κ ∝ T 2 is still
valid even at the nanometer scale. Then, we have extracted
the phonon MFP using Eq. (3); the results are presented in
Fig. 3(b).

Two different limits are observed for the phonon MFP
depending on the size of the samples. The first concerns the
large systems (membrane and large microwire) for which the
MFP lies in the glassy limit given by the gray area in Fig. 3(b).
This glassy range is defined as the minimum or maximum
MFP experimentally obtained on bulk amorphous materials.
So concerning the large samples, we can conclude that the
thermal transport is similar to what happens in bulk materials.
On the other hand, for the small section samples, smaller
phonon MFPs are clearly observed as if they were set by
the interaction with the surfaces as expected in the Casimir-
Ziman regime. The increase of MFP in narrow microwire and
nanowire at low temperature is interpreted as the signature of
specular reflections of phonons on the wire boundaries. When
specular reflections are involved in the thermal transport, the
temperature variation of the MFP is generally well described
in the framework of the Berman-Foster-Ziman (BFZ) model of
phonon boundary scattering using the sole physical roughness
of the surfaces as a fitting parameter [20].

The phonon scattering on the boundaries may have two
possible origins, either from the actual asperity (physical
roughness) of the nanowires or due to the presence of TLSs on
the surface. We will then calculate an effective roughness ηeff

of the nanowire from the experimental phonon MFP variation
with temperature and compare it to the roughness estimated
from the scanning electron microscopy image (SEM). That
effective roughness will be representative of all the phonon
scattering processes: scattering on boundaries characterized
by the actual physical roughness (asperity) and the scattering
of phonons on TLSs.

To obtain the effective roughness for the nanostructures,
we first extract the probability of specular reflection p(λ,η) =
exp (−16π3η2/λ2) where η is the roughness of the nanowire’s
edges, and λ is the dominant phonon wavelength. To do that,
we equal the experimental MFP to the MFP calculated from
the BFZ model [20]:

�ph = 1 + pexp(λ,η)

1 − pexp(λ,η)
�Cas. (4)

FIG. 4. Extracted probability of specular reflection for the
nanowire (light green) and the narrow microwire (dark green) in
comparison to the theoretical fit from the Ziman approach using
Eq. (5) with different roughness. The hatched area shows a purely
diffusive regime known as the Casimir regime where the MFP
becomes equal to the diameter of the nanostructure. In the inset, an
SEM picture of the SiN nanowire edge is shown. The actual roughness
is much smaller than 9 nm.

�Cas = 1.12
√

w × t is the Casimir MFP, where w × t is the
section of the nanosystems. So the experimental probability of
specular reflection can be obtained from Eq. (4) through

pexp = �ph − �Cas

�ph + �Cas

. (5)

�ph is the experimental MFP as calculated through Eq. (3)
from the thermal conductance.

The experimental probability of specular reflection for
narrow microwires and nanowires is illustrated in Fig. 4 as
extracted from Eq. (5), in comparison with theoretical fits
for different roughness. The fits help us to estimate this
effective roughness ηeff that can be compared to the mean
roughness obtained from the SEM characterization of the
nanowire. The roughness that fits the experimental probability
of specular reflection is of the order of ηeff

∼= 9 nm three
times bigger than the one evaluated by SEM observation
which is about η ∼= 3 ± 1 nm (see inset of Fig. 4). This excess
of roughness is attributed to TLSs that act on the surfaces
as an artificial roughness, meaning that phonon-surface TLS
scattering dominates the heat transport. This is indeed fully
consistent with the quadratic temperature variation of the
thermal conductance [46].

To conclude, we show that for amorphous nanowires the
temperature variation of the thermal conductance is still
quadratic, even if it would have been expected that in restricted
geometry the behavior of thermal conductance would be
cubic-like in the Casimir-Ziman regime (boundary scattering
limit). This is ascribed to the presence of a strong density
of phonon scattering centers located on the surface as seen
in the study of the effective roughness obtained from the
phonon mean free path. A possible high density of TLSs
can explain this observation which is in good agreement
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with the quadratic variation of κ(T ). Actually, the TLSs are
expected to form in nanovoids or low-density regions which
are sensitive to preparation methods (temperature growth
and thickness) of the materials [7–10]. This means that,
especially for thin films, the presence of voids in volume is
less probable than on the surfaces. Consequently, the TLSs
may indeed be concentrated on the surfaces in agreement with
our experimental observations [8].

Both results (quadraticity and phonon MFP) show the
robustness of the universality of thermal transport in amor-
phous materials even down to the nanometer scale. The
high density of TLSs may have significant consequences for
dissipation processes and decoherence phenomena in quantum
nano-electromechanical systems made out of amorphous
SiN [26,47,48]. Further experimental proofs of the high
density of TLSs on the surface could be obtained by specific
heat measurements on low-dimensional amorphous systems

such as very thin membranes at very low temperature or by
nano-electromechanical measurement at very low temperature
(below 10 mK). An abnormally high TLS density would be
revealed by an anomalously high surface specific heat.

ACKNOWLEDGMENTS

We thank the micro- and nanofabrication facilities of
Institut Néel CNRS—the Pole Capteurs Thermométriques et
Calorimétrie (E. André, P. Lachkar, G. Moiroux, and J.-L.
Garden) and Nanofab (T. Crozes, S. Dufresnes, B. Fernandez,
T. Fournier, G. Julié, and J.-F. Motte)—for their advice in
the preparation of the samples. O.B. and E.C. acknowledge
financial support from the ANR project QNM Grant No.
040401 and the European projects MicroKelvin EUFRP7
Grant No. 228464 and (O.B.) MERGING Grant No. 309150.

[1] R. O. Pohl, X. Liu, and E. Thompson, Rev. Mod. Phys. 74, 991
(2002).

[2] R. C. Zeller and R. O. Pohl, Phys. Rev. B 4, 2029 (1971).
[3] R. B. Stephens, Phys. Rev. B 8, 2896 (1973).
[4] W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).
[5] P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag.

25, 1 (1972).
[6] M. P. Zaitlin and P. W. Anderson, Phys. Rev. B 12, 4475 (1975).
[7] D. R. Queen, X. Liu, J. Karel, T. H. Metcalf, and F. Hellman,

Phys. Rev. Lett. 110, 135901 (2013).
[8] D. R. Queen, X. Liu, J. Karel, T. H. Metcalf, and F. Hellman, J.

Non-Cryst. Solids 426, 19 (2015).
[9] X. Liu, B. E. White Jr., R. O. Pohl, E. Iwanizcko, K. M. Jones,

A. H. Mahan, B. N. Nelson, R. S. Crandall, and S. Veprek, Phys.
Rev. Lett. 78, 4418 (1997).

[10] X. Liu, D. R. Queen, T. H. Metcalf, J. E. Karel, and F. Hellman,
Phys. Rev. Lett. 113, 025503 (2014).

[11] T. Perez-Castaneda, C. Rodriguez-Tinoco, J. Rodriguez-Viejo,
and M. A. Ramos, Proc. Natl. Acad. Sci. U.S.A. 111, 11275
(2014).

[12] X. Liu, D. R. Queen, T. H. Metcalf, J. E. Karel, and F. Hellman,
Arch. Metall. Mater. 60, 359 (2015).

[13] A. J. Leggett, Physica B 169, 322 (1991).
[14] A. J. Leggett and D. C. Vural, J. Phys. Chem. B 117, 12966

(2013).
[15] L. C. Ku and C. C. Yu, Phys. Rev. B 72, 024526 (2005).
[16] R. W. Simmonds, K. M. Lang, D. A. Hite, S. Nam, D. P. Pappas,

and J. M. Martinis, Phys. Rev. Lett. 93, 077003 (2004).
[17] J. Gao, J. Zmuidzinas, B. A. Mazin, H. G. LeDuc, and P. K.

Day, Appl. Phys. Lett. 90, 102507 (2007).
[18] H. B. G. Casimir, Physica (Amsterdam) 5, 495 (1938).
[19] J. M. Ziman, Electrons and Phonons (Clarendon Press, Oxford,

2001).
[20] R. Berman, E. L. Foster, and J. M. Ziman, Proc. R. Soc. London,

Ser. A 231, 130 (1955).
[21] J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Nano

Lett. 9, 1861 (2009).
[22] J. S. Heron, T. Fournier, N. Mingo, and O. Bourgeois, Nano

Lett. 10, 2288 (2010).

[23] J. S. Heron, C. Bera, T. Fournier, N. Mingo, and O. Bourgeois,
Phys. Rev. B 82, 155458 (2010).

[24] C. Blanc, J.-S. Heron, T. Fournier, and O. Bourgeois, Appl.
Phys. Lett. 105, 043106 (2014).

[25] C. C. Yu and J. J. Freeman, Phys. Rev. B 36, 7620 (1987).
[26] D. R. Southworth, R. A. Barton, S. S. Verbridge, B. Ilic, A. D.

Fefferman, H. G. Craighead, and J. M. Parpia, Phys. Rev. Lett.
102, 225503 (2009).

[27] Q. P. Unterreithmeier, T. Faust, and J. P. Kotthaus, Phys. Rev.
Lett. 105, 027205 (2010).

[28] B. L. Zink and F. Hellman, Solid State Commun. 129, 199
(2004).

[29] D. R. Queen and F. Hellman, Rev. Sci. Instrum. 80, 063901
(2009).

[30] M. M. Leivo and J. P. Pekola, Appl. Phys. Lett. 72, 1305
(1998).

[31] D. J. Goldie, A. V. Velichko, D. M. Glowacka, and S. Withington,
J. Appl. Phys. 109, 084507 (2011).

[32] N. Zen, T. A. Puurtinen, T. J. Isotalo, S. Chaudhuri, and I. J.
Maasilta, Nat. Commun. 5, 3435 (2014).

[33] D. V. Anghel, J. P. Pekola, M. M. Leivo, J. K. Suoknuuti, and
M. Manninen, Phys. Rev. Lett. 81, 2958 (1998).

[34] W. Holmes, J. M. Gildemeister, and P. L. Richards, Appl. Phys.
Lett. 72, 2250 (1998).

[35] H. F. C. Hoevers, M. L. Ridder, A. Germeau, M. P. Bruijn, P. A.
J. de Korte, and R. J. Wiegerink, Appl. Phys. Lett. 86, 251903
(2005).

[36] D. V. Anghel, T. Kühn, Y. M. Galperin, and M. Manninen, Phys.
Rev. B 75, 064202 (2007).

[37] T. Kühn, D. V. Anghel, Y. M. Galperin, and M. Manninen, Phys.
Rev. B 76, 165425 (2007).

[38] S. Withington, D. J. Goldie, and A. V. Velichko, Phys. Rev. B
83, 195418 (2011).

[39] S. Withington and D. J. Goldie, Phys. Rev. B 87, 205442
(2013).

[40] O. Bourgeois, T. Fournier, and J. Chaussy, J. Appl. Phys. 101,
016104 (2007).

[41] A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon, F. Omnès,
and O. Bourgeois, Rev. Sci. Instrum. 83, 054902 (2012).

165411-5

https://doi.org/10.1103/RevModPhys.74.991
https://doi.org/10.1103/RevModPhys.74.991
https://doi.org/10.1103/RevModPhys.74.991
https://doi.org/10.1103/RevModPhys.74.991
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.4.2029
https://doi.org/10.1103/PhysRevB.8.2896
https://doi.org/10.1103/PhysRevB.8.2896
https://doi.org/10.1103/PhysRevB.8.2896
https://doi.org/10.1103/PhysRevB.8.2896
https://doi.org/10.1007/BF00660072
https://doi.org/10.1007/BF00660072
https://doi.org/10.1007/BF00660072
https://doi.org/10.1007/BF00660072
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1080/14786437208229210
https://doi.org/10.1103/PhysRevB.12.4475
https://doi.org/10.1103/PhysRevB.12.4475
https://doi.org/10.1103/PhysRevB.12.4475
https://doi.org/10.1103/PhysRevB.12.4475
https://doi.org/10.1103/PhysRevLett.110.135901
https://doi.org/10.1103/PhysRevLett.110.135901
https://doi.org/10.1103/PhysRevLett.110.135901
https://doi.org/10.1103/PhysRevLett.110.135901
https://doi.org/10.1016/j.jnoncrysol.2015.06.020
https://doi.org/10.1016/j.jnoncrysol.2015.06.020
https://doi.org/10.1016/j.jnoncrysol.2015.06.020
https://doi.org/10.1016/j.jnoncrysol.2015.06.020
https://doi.org/10.1103/PhysRevLett.78.4418
https://doi.org/10.1103/PhysRevLett.78.4418
https://doi.org/10.1103/PhysRevLett.78.4418
https://doi.org/10.1103/PhysRevLett.78.4418
https://doi.org/10.1103/PhysRevLett.113.025503
https://doi.org/10.1103/PhysRevLett.113.025503
https://doi.org/10.1103/PhysRevLett.113.025503
https://doi.org/10.1103/PhysRevLett.113.025503
https://doi.org/10.1073/pnas.1405545111
https://doi.org/10.1073/pnas.1405545111
https://doi.org/10.1073/pnas.1405545111
https://doi.org/10.1073/pnas.1405545111
https://doi.org/10.1515/amm-2015-0059
https://doi.org/10.1515/amm-2015-0059
https://doi.org/10.1515/amm-2015-0059
https://doi.org/10.1515/amm-2015-0059
https://doi.org/10.1016/0921-4526(91)90246-B
https://doi.org/10.1016/0921-4526(91)90246-B
https://doi.org/10.1016/0921-4526(91)90246-B
https://doi.org/10.1016/0921-4526(91)90246-B
https://doi.org/10.1021/jp402222g
https://doi.org/10.1021/jp402222g
https://doi.org/10.1021/jp402222g
https://doi.org/10.1021/jp402222g
https://doi.org/10.1103/PhysRevB.72.024526
https://doi.org/10.1103/PhysRevB.72.024526
https://doi.org/10.1103/PhysRevB.72.024526
https://doi.org/10.1103/PhysRevB.72.024526
https://doi.org/10.1103/PhysRevLett.93.077003
https://doi.org/10.1103/PhysRevLett.93.077003
https://doi.org/10.1103/PhysRevLett.93.077003
https://doi.org/10.1103/PhysRevLett.93.077003
https://doi.org/10.1063/1.2711770
https://doi.org/10.1063/1.2711770
https://doi.org/10.1063/1.2711770
https://doi.org/10.1063/1.2711770
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1016/S0031-8914(38)80162-2
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1098/rspa.1955.0161
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl803844j
https://doi.org/10.1021/nl101622x
https://doi.org/10.1021/nl101622x
https://doi.org/10.1021/nl101622x
https://doi.org/10.1021/nl101622x
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1103/PhysRevB.82.155458
https://doi.org/10.1063/1.4890963
https://doi.org/10.1063/1.4890963
https://doi.org/10.1063/1.4890963
https://doi.org/10.1063/1.4890963
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevB.36.7620
https://doi.org/10.1103/PhysRevLett.102.225503
https://doi.org/10.1103/PhysRevLett.102.225503
https://doi.org/10.1103/PhysRevLett.102.225503
https://doi.org/10.1103/PhysRevLett.102.225503
https://doi.org/10.1103/PhysRevLett.105.027205
https://doi.org/10.1103/PhysRevLett.105.027205
https://doi.org/10.1103/PhysRevLett.105.027205
https://doi.org/10.1103/PhysRevLett.105.027205
https://doi.org/10.1016/j.ssc.2003.08.048
https://doi.org/10.1016/j.ssc.2003.08.048
https://doi.org/10.1016/j.ssc.2003.08.048
https://doi.org/10.1016/j.ssc.2003.08.048
https://doi.org/10.1063/1.3142463
https://doi.org/10.1063/1.3142463
https://doi.org/10.1063/1.3142463
https://doi.org/10.1063/1.3142463
https://doi.org/10.1063/1.120979
https://doi.org/10.1063/1.120979
https://doi.org/10.1063/1.120979
https://doi.org/10.1063/1.120979
https://doi.org/10.1063/1.3561432
https://doi.org/10.1063/1.3561432
https://doi.org/10.1063/1.3561432
https://doi.org/10.1063/1.3561432
https://doi.org/10.1038/ncomms4435
https://doi.org/10.1038/ncomms4435
https://doi.org/10.1038/ncomms4435
https://doi.org/10.1038/ncomms4435
https://doi.org/10.1103/PhysRevLett.81.2958
https://doi.org/10.1103/PhysRevLett.81.2958
https://doi.org/10.1103/PhysRevLett.81.2958
https://doi.org/10.1103/PhysRevLett.81.2958
https://doi.org/10.1063/1.121269
https://doi.org/10.1063/1.121269
https://doi.org/10.1063/1.121269
https://doi.org/10.1063/1.121269
https://doi.org/10.1063/1.1949269
https://doi.org/10.1063/1.1949269
https://doi.org/10.1063/1.1949269
https://doi.org/10.1063/1.1949269
https://doi.org/10.1103/PhysRevB.75.064202
https://doi.org/10.1103/PhysRevB.75.064202
https://doi.org/10.1103/PhysRevB.75.064202
https://doi.org/10.1103/PhysRevB.75.064202
https://doi.org/10.1103/PhysRevB.76.165425
https://doi.org/10.1103/PhysRevB.76.165425
https://doi.org/10.1103/PhysRevB.76.165425
https://doi.org/10.1103/PhysRevB.76.165425
https://doi.org/10.1103/PhysRevB.83.195418
https://doi.org/10.1103/PhysRevB.83.195418
https://doi.org/10.1103/PhysRevB.83.195418
https://doi.org/10.1103/PhysRevB.83.195418
https://doi.org/10.1103/PhysRevB.87.205442
https://doi.org/10.1103/PhysRevB.87.205442
https://doi.org/10.1103/PhysRevB.87.205442
https://doi.org/10.1103/PhysRevB.87.205442
https://doi.org/10.1063/1.2400093
https://doi.org/10.1063/1.2400093
https://doi.org/10.1063/1.2400093
https://doi.org/10.1063/1.2400093
https://doi.org/10.1063/1.4704086
https://doi.org/10.1063/1.4704086
https://doi.org/10.1063/1.4704086
https://doi.org/10.1063/1.4704086


ADIB TAVAKOLI et al. PHYSICAL REVIEW B 95, 165411 (2017)

[42] A. Sikora, H. Ftouni, J. Richard, C. Hébert, D. Eon, F. Omnès,
and O. Bourgeois, Rev. Sci. Instrum. 84, 029901 (2013).

[43] O. Bourgeois, E. André, C. Macovei, and J. Chaussy, Rev. Sci.
Instrum. 77, 126108 (2006).

[44] In the Casimir regime of heat transport, the calculated thermal
conductivity κ is meaningful only when comparing thermal
transport between different sizes of samples of the same mate-
rials. Indeed, since the phonon MFP changes with the reduction
of size in the case of nanostructured samples, the absolute value
of thermal conductivity is not a relevant parameter.

[45] P. D. Vu, J. R. Olson, and R. O. Pohl, J. Low Temp. Phys. 113,
123 (1998).

[46] We did not do the same data treatment to the two largest samples
(microwire and membrane) because they belong to the quasi-
bulk-limit for which the Berman-Foster-Ziman model may not
fully apply.

[47] M. Defoort, K. J. Lulla, C. Blanc, H. Ftouni, O. Bourgeois, and
E. Collin, J. Low Temp. Phys. 171, 731 (2013).

[48] O. Maillet, F. Vavrek, A. D. Fefferman, O. Bourgeois, and E.
Collin, New J. Phys. 18, 073022 (2016).

165411-6

https://doi.org/10.1063/1.4793652
https://doi.org/10.1063/1.4793652
https://doi.org/10.1063/1.4793652
https://doi.org/10.1063/1.4793652
https://doi.org/10.1063/1.2403934
https://doi.org/10.1063/1.2403934
https://doi.org/10.1063/1.2403934
https://doi.org/10.1063/1.2403934
https://doi.org/10.1023/A:1022593123280
https://doi.org/10.1023/A:1022593123280
https://doi.org/10.1023/A:1022593123280
https://doi.org/10.1023/A:1022593123280
https://doi.org/10.1007/s10909-012-0693-5
https://doi.org/10.1007/s10909-012-0693-5
https://doi.org/10.1007/s10909-012-0693-5
https://doi.org/10.1007/s10909-012-0693-5
https://doi.org/10.1088/1367-2630/18/7/073022
https://doi.org/10.1088/1367-2630/18/7/073022
https://doi.org/10.1088/1367-2630/18/7/073022
https://doi.org/10.1088/1367-2630/18/7/073022



