11 research outputs found

    Posture optimization algorithm for large structure assemblies based on skin model

    Get PDF
    Geometric deviations inevitably occur in product manufacturing and seriously affect the assembly quality and product functionality. Assembly simulations on the basis of computer-aided design (CAD) package could imitate the assembly process and thus find out the design deficiencies and detect the assemblability of the components. Although lots of researches have been done on the prediction of assembly variation considering the geometric errors, most of them only simplify the geometric variation as orientation and position deviation rather than the manufacturing deformation. However, in machinery manufacturing, even if the manufacturing defects are limited, they could propagate and accumulate through components and lead to a noncompliant assembly. Recently, many point-based models have been applied to assembly simulation; however they are mainly interested in simulating the resulting positions of the assembled parts and lack the consideration of the postprocessing after positioning. This paper enriches the complete assembly simulation process based on skin model and presents a simple and effective posture evaluation and optimization method. The studied approach includes a software algorithm applied to evaluate the contact state of the assembly parts and a mathematical model based on the particle swarm optimization to acquire the optimal assembly posture. To verify the efficiency and feasibility of the proposed method, a case study on the aircraft wing box scaling model assembly is performed

    Dynamic analysis on single-rotor multi-input helicopter main gearbox related with structural parameters

    Get PDF
    Combined with the finite element method and the lumped mass method, the integral node dynamic model of a single-rotor multi-input helicopter main gearbox is established. The influence of shaft parameters on dynamic characteristics is analyzed, and each torsional shaft is regarded as a finite element node to derive the system dynamic equation. In addition, the dynamic model of the meshing pair element is established by lumped mass method, and these elements not only include internal excitations such as time-varying meshing stiffness and transmission error, but also carry the external load. The differential equations of the system are solved by the Fourier series method. The dynamic responses of the converging element and the planetary gear train are obtained. The load-sharing coefficients of these elements are calculated by the influence of the shaft structural parameters. A parameter optimization method is proposed to improve the system load characteristics, which provides a theoretical support for the design of helicopter main transmission syste

    Constructing G2 Continuous Curve on Freeform Surface with Normal Projection

    Get PDF
    AbstractThis article presents a new method for G2 continuous interpolation of an arbitrary sequence of points on an implicit or parametric surface with prescribed tangent direction and curvature vector, respectively, at every point. First, a G2 continuous curve is constructed in three-dimensional space. Then the curve is projected normally onto the given surface. The desired interpolation curve is just the projection curve, which can be obtained by numerically solving the initial- value problems for a system of first-order ordinary differential equations in the parametric domain for parametric case or in three-dimensional space for implicit case. Several shape parameters are introduced into the resulting curve, which can be used in subsequent interactive modification so that the shape of the resulting curve meets our demand. The presented method is independent of the geometry and parameterization of the base surface. Numerical experiments demonstrate that it is effective and potentially useful in numerical control (NC) machining, path planning for robotic fibre placement, patterns design on surface and other industrial and research fields

    Constructing G2 Continuous Curve on Freeform Surface with Normal Projection

    Get PDF
    AbstractThis article presents a new method for G2 continuous interpolation of an arbitrary sequence of points on an implicit or parametric surface with prescribed tangent direction and curvature vector, respectively, at every point. First, a G2 continuous curve is constructed in three-dimensional space. Then the curve is projected normally onto the given surface. The desired interpolation curve is just the projection curve, which can be obtained by numerically solving the initial- value problems for a system of first-order ordinary differential equations in the parametric domain for parametric case or in three-dimensional space for implicit case. Several shape parameters are introduced into the resulting curve, which can be used in subsequent interactive modification so that the shape of the resulting curve meets our demand. The presented method is independent of the geometry and parameterization of the base surface. Numerical experiments demonstrate that it is effective and potentially useful in numerical control (NC) machining, path planning for robotic fibre placement, patterns design on surface and other industrial and research fields

    Optimisation for clamping force of aircraft composite structure assembly considering form defects and part deformations

    Get PDF
    Given the existence of manufacturing defects and the accumulation of assembly errors, non-compliant assembly appears between components, especially for composite structure assembly. In the engineering application, the clamping force (CF) is often used to eliminate the clearance between mating components, but the improper CF may result in unwanted structure failure. Thus, on the premise of ensuring the safety of composite parts, this study proposes a procedure to systematically optimise the assembly CF. Firstly, the components mating surfaces were obtained by laser scanner, and the matching of actual surfaces was transformed and simplified based on ‘equivalent surface’ concept. Then, a mathematical optimisation model was established. The CF layout and magnitude were taken as variables, and the clearance elimination rate and the overall assembly force value were employed as objective functions. Finally, the improved genetic algorithm (GA) was used to solve this problem. A parametric finite element analysis (FEA) model was built, and model accuracy was verified by physical experiments. The finite element calculation and post-processing were carried out by Python script in ABAQUS®. Compared to the engineer’s traditional approach, the influence of form defects and part deformations were considered, which can help control the assembly stress well and ensure product performance

    Progressive damage numerical modelling and simulation of aircraft composite bolted joints bearing response

    Get PDF
    Finite element numerical progressive damage modelling and simulations applied to the strength prediction of airframe bolted joints on composite laminates can lead to shorter and more efficient product cycles in terms of design, analysis and certification, while benefiting the economic manufacturing of composite structures. In the study herein, experimental bolted joint bearing tests were carried out to study the strength and failure modes of fastened composite plates under static tensile loads. The experimental results were subsequently benchmarked against various progressive damage numerical modelling simulations where the effects of different failure criteria, damage variables and subroutines were considered. Evidence was produced that indicated that both the accuracy of the simulation results and the speed of calculation were affected by the choice of user input and numerical scheme

    Effect of Gap and Shims on the Strain and Stress State of the Composite-Aluminum Hybrid Bolted Structure

    No full text
    The composite-aluminum hybrid bolted structures are widely used in aircraft. Due to low molding accuracy of composite components, gaps always occur between components during assembly. In this case, the bolt connection can cause a complex strain and stress state of component. It may adversely affect the mechanical properties or cause local damage of the structure. A simplified model of the composite-aluminum assembly structure was established in this paper. Then, the influence of forced assembly, liquid shim, and peelable fiberglass shim on the strain and stress state of the composite-aluminum hybrid bolted structure was studied. A bolt connection experimental device was designed to apply a preload to the specimen. The strain field on the specimen surface was measured using the 3D-DIC strain measurement system. The finite element model was established to study the interlaminar stress and damage state of composite laminates. It is found that the strain of specimen in the X-direction is mainly affected by the bending deformation, while the strain in the Y-direction is mainly affected by the compression of bolt head. For composite laminates, the strain value in the X-direction can be reduced by 8.31%-70.97% with shims. As for the strain value in the Y-direction, the liquid shim can only reduce it up to 23.93%when the gap is large. In addition, the liquid shim and peelable fiberglass shim cannot reduce the stress value of all interlaminar elements, but it can make the stress distribution more uniform and improve the stress state of the interlaminar element when the shim was more than 0.8 mm
    corecore