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Abstract: Finite element numerical progressive damage modelling and simulations applied to

the strength prediction of airframe bolted joints on composite laminates can lead to shorter and

more efficient product cycles in terms of design, analysis and certification, while benefiting the

economic manufacturing of composite structures. In the study herein, experimental bolted joint

bearing tests were carried out to study the strength and failure modes of fastened composite plates

under static tensile loads. The experimental results were subsequently benchmarked against various

progressive damage numerical modelling simulations where the effects of different failure criteria,

damage variables and subroutines were considered. Evidence was produced that indicated that both

the accuracy of the simulation results and the speed of calculation were affected by the choice of user

input and numerical scheme.

Keywords: structural joints; mechanical testing; strength; numerical modelling

1. Introduction

The use of resin-based carbon fiber composite materials in modern large civil aircraft has been

increasing significantly in recent decades. Bolted joints are still widely used on composite airframe

structures due to their ease of installation and disassembly and their damage tolerance characteristics.

The strength estimation in terms of bolt bearing against composite laminated plates is important for

the design optimization of aircraft composite structures. Over the past 30 years, a significant amount

of research has been published regarding the numerical and experimental behaviors of composite

bolted joints.

Analytical models have been widely used to predict the behavior of single-lap composite bolted

joints, and the effects of geometrical parameters, material properties, the stacking sequences of

composites, bolt torque and the friction coefficient on the stiffness of composite bolted joints have been

included in these analytical models. These models are regarded as valuable preliminary tools for the

analysis of the stiffness of composite bolted joints [1–5].

Finite element technology has been applied in the current study to determine the structural

behaviors of composite bolted joints where not only could strain and stress be calculated for the whole
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loading process, but different composite damage states could be simulated. The early three-dimensional

progressive damage models used to analyze composite joint series mainly incorporated Hashin [6]

(or maximum-stress failure criteria), Chang-Chang [7] or Tan degradation [8], and the accuracy of these

simulations were mainly evaluated according to the numerical values of the strength and stiffness of

composite joints [9,10]. The effects of failure criteria and degradation rules on the prediction results

were then valued, and it was found that strength was sensitive to the selected and degradation

factors [11,12].

Álvaro Olmedo and Carlos Santiuste proposed a set of failure criteria based on Chang–Lessard

criteria [13], considering the effect of out-of-plane stress and a non-linear shear stress–strain

relationship [14]. The load-displacement curve predicted by the new failure criteria was closer to the

experimental result than the curve predicted using the Hashin criteria. C. Hühne and A.-K. Zerbst et al.

applied Hashin criteria with constant and continuous degradation models to determine the progressive

damage of composite bolted joints with liquid shim layers, wherein the material data of the continuous

degradation model was compiled by a MATLAB routine and implemented in finite element software

ABAQUS at same time. The numerical results acquired by continuous degradation showed better

correlation with the experimental data [15].

The abovementioned progressive damage models for carbon-fiber composite joints available in the

literature were mainly based on the ABAQUS user subroutine USDFLD (User subroutine to redefine

field variables at a material point). Although different failure criteria can be conveniently applied by

USDFLD, only constant degradation rules can be used conveniently. A complex constitutive model such

as an elastic–plastic damage constitutive model [16], a micromechanics-based constitutive model [17]

or an energy-based constitutive model [18] cannot be defined using USDFLD. UMAT (User subroutine

to define a material’s mechanical behavior) has several advantages over USDFLD, including the

modification of constitutive relations and consideration of uncertainty in material properties [19].

In most related researched, the maximum-stress criterion has often been used to predict the initial

fiber compression failure of a composite. As reported by in the literature [20,21], fiber kinking plays a

key role in composite compression failure when composite components are subject to compressive

loads in the fiber’s direction. Silvestre Taveira Pinho proposed that fiber kinking was caused by

shear-dominated matrix failure in a misaligned frame under significant longitudinal compression,

and a set of LaRC05 failure criteria was proposed based on plasticity theory [22]. For matrix failure

prediction, the effect of in-situ strength was considered using LaRC05 criteria based on Puck failure

criteria, which use a potential fracture plane parallel to the fiber direction to describe the failure of

matrices based on the Mohr–Coulomb theory [23,24]. Although the phenomenological LaRC05 criteria

and Puck criteria possess high accuracy and received high recognition at the Second World-Wide

Failure Exercise, they are not as widely used in the study of progressive damage of composite bolted

joint bearing problems as the classical Hashin and maximum-stress criteria. The main reason for this

may be that it is computationally expensive to calculate fiber misalignment angles and fracture angles

of matrices especially in implicit finite elements due to convergence problems.

In this paper, an efficient method of determining the maximum fiber misalignment angle and

maximum fracture angle of matrices is presented based on the derivatives of continuous functioning

and using LaRC05 and Puck failure criteria. To improve the accuracy of numerical simulation, LaRC05,

Puck and Hashin criteria (which were ranked very highly at the Second World-Wide Failure Exercise),

as well as non-phenomenal maximum-stress criteria, were combined with different damage variables

and implemented in the ABAQUS subroutine UMAT. A static tensile experiment was carried out on

composite bolted joints to compare with simulation results, and not only were the numerical differences

considered, but also the damage areas of composite plates and the deformations of fasteners.
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2. Experiment Procedure

2.1. Description of Specimen

The single lap joint is a common means of joining airframe components on plate structures. In the

experimental study, single-lap composite bolted joints were tested that consisted of IMS-977-2 carbon

fiber/epoxy matrix composite lap plates joined by HST12 Hi-Lite fasteners. The geometry and size of

specimens is shown in Figure 1, following the ASTM D5961 standard [25]. The stacking sequence of the

laminated plate was [45◦/90◦/–45◦/0◦/90◦/0◦/–45◦/90◦/45◦/–45◦]s, for a total of 20 layers with single-layer

nominal thicknesses of 0.188 mm. The HST12 Hi-Lite fastener with self-locking characteristics consisted

of titanium alloy Ti–6Al–4V pins and stainless steel CRES347 nuts.

– – –

– –
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Figure 1. Specimen geometry size.

2.2. Experimental Process

Experimental tests were carried out at room temperature (24 ± 3 ◦C) and humidity (55 ± 5%),

and the specimen rested in these room/laboratory conditions for three hours. As shown in Figure 2,

the tensile experiment was performed on a CMT5504 Electronic universal testing machine (MTS System

Corporation, Eden Prairie, MN, USA) with a 100-kN load capability. The relative error of force and

displacement indication of the machine was ±0.5%. The grip holder moving speed was adjusted

by step less speed regulation, and the accuracy of moving speed could be controlled within ±0.5%.

Each specimen contained two support plates bonded to composite components to minimize the

eccentricity in applied force from the grip holder of the test machine, and the thickness of support

plates was equal to the sum of the composite plate thicknesses.

– – –

– –

 

Figure 2. Tensile experiment.
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After the machine was preheated for more than 15 min, the grip holder was pulled at a speed of

2 mm/min to simulate quasi-static loading, then stopped after the load dropped by approximately 30%

from the maximum value. The numerical values of applied load and grip holder displacement were

recorded automatically. The test procedure corresponds to the guidelines given in ASTM D5961 [25].

3. Finite Element Model

3.1. Material Properties

The basic mechanical property parameters of the IMS-977-2 composite lamina are given in

Table 1 [26,27]. The stress-strain curves of titanium alloy Ti–6Al–4V and stainless steel CRES347 are

shown in Figure 3 [28], and the corresponding relationship between stress and strain (Table 2) can be

obtained according to the stress-strain curves.
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Figure 3. Stress-strain curves of fastener.



Materials 2020, 13, 5606 5 of 16

Table 1. Mechanical parameters of the lamina.

Property Units Value

Longitudinal tensile modulus, E11 GPa 156.00
Transverse tensile modulus, E22, E33 GPa 8.35

In-plane shear modulus, G12 GPa 4.20
Out-of-plane shear modulus, G13 GPa 4.20
Out-of-plane shear modulus, G23 GPa 2.52

Major Poisson’s ratio, υ12 - 0.33
Through thickness Poisson’s ratio, υ13 - 0.33
Through thickness Poisson’s ratio, υ23 - 0.55

Longitudinal tensile strength, XT MPa 2500.00
Longitudinal compressive strength, XC MPa 1400.00

Transverse tensile strength, YT MPa 75.00
Transverse compressive strength, YC MPa 250.00

In-plane shear strength, S12 MPa 95.00
In-plane shear strength, S13 MPa 95.00

Out-of-plane shear strength, S23 MPa 108.00
Fiber tensile fracture energy, Gft J/m2 91.60

Fiber compressive fracture energy, Gfc J/m2 79.90

Matrix tensile fracture energy, Gmt J/m2 0.22

Matrix compressive fracture energy, Gmc J/m2 2.00

Table 2. Material properties of the HST (Hi-Lite fastening system) fastener.

Specimen Modulus Poisson Ratio

Hi-Lite pins 1.103 × 102 GPa 3.100 × 10−1

Hi-Lite nuts 2.110 × 10 2 Gpa 2.790 × 10−1

σy εp

Stress σy (Mpa) and strain εp of
Ti–6Al–4V in the plastic

deformation stage

8.560 × 102 0

9.380 × 102 8.870 × 10−3

9.740 × 102 1.300 × 10−2

9.820 × 102 1.580 × 10−2

9.910 × 102 2.010 × 10−2

1.010 × 103 3.750 × 10−2

1.020 × 103 5.070 × 10−2

1.030 × 103 6.790 × 10−2

Stress σy (Mpa) and strain εp of
CRES347 in the plastic

deformation stage

3.940 × 102 0

6.370 × 102 3.180 × 10−3

6.450 × 102 3.240 × 10−3

7.270 × 102 4.050 × 10−3

7.520 × 102 4.470 × 10−3

7.860 × 102 5.470 × 10−3

8.000 × 102 6.520 × 10−3

8.020 × 102 6.710 × 10−3

8.040 × 102 7.480 × 10−3

3.2. Progressive Damage Model

Many failure criteria have been proposed to predict fiber reinforced composite material failure.

The early failure criteria did not consider the actual failure mechanisms, whereas later phenomenological

failure criteria considered how failure would occur as long as the stress reached its ultimate strength

(i.e., maximum-stress criteria), as shown in Equations (1)–(4). Equations (5)–(8) depict four Hashin

criteria failure modes that are considered to be the earliest three-dimensional stress states and failure

mechanisms. Micromechanical behavior was considered according to Puck criteria, where the degree
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of fiber failure is not only related to the stress state of the composite but also to the volume fraction

of the fiber and matrices, as shown in Equations (9)–(15). For matrix failure, Puck thought that the

matrix fracture occurred on the plane parallel to the fiber direction, while the fracture angle was

used to describe the deflection of the fracture plane. The range of the fracture angle was from 0◦

to 180◦, meeting the requirement of the maximum damage factor. In LaRc05 criteria, as shown in

Equations (16)–(26), Pinho introduced the effects of in-situ strength to predict matrix criteria based on

Puck criteria, and as a result fiber kinking prediction was built based on plasticity theory, which is

different from the current damage criteria.

To search for the fracture angle of a matrix, Puck proposed the solution of a stepwise calculation of

the maximum damage factor using an interval of 1◦within its limits. For each stress state, 180 calculations

are required, which is the same problem as for LaRc05 criteria when searching for the fiber misalignment

angle. This may be a computationally expensive calculation, and severe convergence problems may

occur in implicit finite element. For these reasons, a certain method is proposed in this paper based

on the derivatives of continuous functions. As shown in Figure 4, several angles were selected that

could derive a damage factor equal to zero, and the damage factors corresponding to these angles were

calculated. The maximum damage factor and required matrix fracture angle or fiber misalignment

angle were selected more quickly than the conventional method.

–
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𝜏𝑇 𝜏𝐿 𝜎𝑁 α is fracture angle 𝑆𝑇𝑆𝐿 𝜇𝑇 𝜇𝐿 ѱ
. The misalignment angle, φ, is the sum of the initial misalignment 

Figure 4. Flow chart of the search for fiber misalignment and the matrix fracture angle.
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τT and τL are the transverse shear stress and longitudinal shear stress on the potential fracture plane,

respectively; σN is the normal stress on the potential fracture plane; α is fracture angle; ST and SL are

transverse fracture resistance and longitudinal resistance on the potential fracture plane, respectively;

µT and µL are the inclination coefficient or frictional coefficient, respectively, which represent the

influence of normal stress on the fracture resistance [22].

The angle of the kink band, ψ, is found numerically in the range 0◦ and 180◦ so as to maximize

the failure index in Equation (17). The misalignment angle, ϕ, is the sum of the initial misalignment

angle ϕ0 (manufacturing defect) and the shear strain expressed in a coordinate system aligned with the

manufacturing defect. This is calculated based on the linear shear response assumption. The McCauley

brackets are defined as <x>+ =max {0,x}.

The above failure criteria in Table 3 were combined with the exponential damage variable,

as shown in Equation (27) and sudden drop damage variable as shown in Equations (28) and (29)

together, and implemented in the ABAQUS user-defined material subroutine UMAT to study the effect

of progressive damage on the numerical simulation results.

Table 3. Failure criteria.

Maximum-stress criteria

Fiber Tensile Failure
(

σ11

XT

)2
≥ 1 (σ11 > 0) (1)

Fiber Compressive Failure
(

σ11

XC

)2
≥ 1 (σ11 < 0) (2)

Matrix Tensile Failure
(

σ22

YT

)2
≥ 1 (σ22 > 0) (3)

Matrix Compressive Failure
(

σ22

YC

)2
≥ 1 (σ22 < 0) (4)

Hashin criteria

Fiber Tensile Failure
(

σ11

XT

)2
+

(

τ12

S12

)2
+

(

τ13

S13

)2
≥ 1 (σ11 > 0) (5)

Fiber Compressive Failure
(

σ11

XC

)2
≥ 1 (σ11 < 0) (6)

Matrix Tensile Failure
(

σ22+σ33

YT

)2
+ 1

(S23)
2

(

τ23
2 − σ22σ33

)

+
(

τ12

S12

)2
+

(

τ13

S13

)2
≥ 1 (σ22 + σ33 > 0) (7)

Matrix Compressive Failure
σ22+σ33

YC

[

(

YC

2S23

)2
− 1

]

+
(

σ22+σ33

2S23

)2
+ τ23

2−σ22σ33

(S23)
2 +

(

τ12

S12

)2
+

(

τ13

S13

)2
≥

1 (σ22 + σ33 < 0)
(8)

Puck criteria

Fiber Tensile Failure

1
XT

(

σ11 −

(

ν12 − ν
f

12
·m E11

E
f

11

)

(σ22 + σ33)

)

≥ 1 (σ11 ≥ 0) (9)

Fiber Compressive Failure

1
XC

(

σ11 −

(

ν12 − ν
f

12
·m E11

E
f

11

)

(σ22 + σ33)

)

≥ 1 (σ11 < 0) (10)

Matrix Tensile Failure
(

σN

YT

)2
+

(

τT

ST

)2
+

(

τL

SL

)2
≥ 1 (σN > 0) (11)

Matrix Compressive Failure
(

τT

ST−µTσN

)2

+
(

τL

SL−µLσN

)2

≥ 1 (σN ≤ 0) (12)

σN = σ2+σ3

2 + σ2−σ3

2 cos(2α) + τ23sin(2α) (13)

τT = − σ2−σ3

2 sin(2α) + τ23cos(2α) (14)
τL = τ12cos(α) + τ31sin(α) (15)
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Table 3. Cont.

LaRc05 Criteria

Fiber Tensile Failure
〈σ11〉+

XT
≥ 1 (σ11 > 0) (16)

Fiber Kinking Failure
(

τm
23

Sis
T
−ηTσ

m
2

)2

+
(

τm
12

Sis
L
−ηLσ

m
2

)2

+

( 〈

σm
2

〉

+

Yis
T

)2

≥ 1 (σ11 < 0) (17)

Matrix Tensile Failure
(

τm
23

Sis
T

)2

+
(

τm
23

Sis
T

)2

+

( 〈

σm
2

〉

+

Yis
T

)2

≥ 1 (σN ≥ 0) (18)

Matrix Compressive Failure
(

τm
23

Sis
T
−ηTσ

m
2

)2

+
(

τm
23

Sis
T
−ηLσ

m
2

)2

+

( 〈

σm
2

〉

+

Yis
T

)2

≥ 1 (σN < 0) (19)

σ
ψ

2
= cos2ψσ2 + sin2ψσ3 + 2sinψcosψτ23 (20)

τ
ψ

12
= τ12cosψ+ τ31sinψ (21)

τ
ψ

23
= −sinψcosψσ2 + sinψcosψσ3 +

(

cos2ψ− sin2ψ
)

τ23 (22)

τ
ψ

31
= τ31cosψ− τ12sinψ (23)

σm
2
= sin2ϕσ1 + cos2ϕσ

ψ

2
− 2sinϕcosϕτ

ψ

12
(24)

τm
12

= −sinϕcosϕσ1 + sinϕcosϕσ
ψ

2
+

(

cos2ϕ− sin2ϕ
)

τ
ψ

12
(25)

τm
23

= τ
ψ

23
cosϕ− τ

ψ

31
sinϕ (26)

The exponential damage variable is written as

d = 1−
e(−TεtL(F−1)/G)

F
(27)

where F is the value of the failure criterion, T is the coefficient in the stiffness matrix (e.g., C11, C22, C33),

εt is ultimate failure strain, L is element characteristic length, and G is fracture toughness [29].

The sudden drop damage variable is written as

d = 0 (F < 1) (28)

d = 1 (F ≥ 1) (29)

4. Discussion

4.1. The Effect of Failure Criteria

The load-displacement curves obtained from the experiment and finite element method are

presented in Figure 5 as different failure criteria but using the same exponential damage variables.

The ultimate failure loads calculated by the finite element method were close to the experimental

results. The maximum difference between the numerical simulation and the average value (17612N) of

the experiment test was 4.8%, as calculated by the maximum-stress and Hashin criteria. The minimum

difference was 1.1%, as calculated by the LaRC05 criteria. On the other hand, the difference in joint

stiffness in the linear elastic stage was relatively larger (the maximum and minimum difference were

29.4% and 17.7%, respectively), and the curves obtained by the finite element method did not have a

marked decline around the end points when compared with the experiment results. Possible reasons

for these differences are as follows: (1) to achieve a good convergence when simulating the failure of a

composite in ABAQUS, the viscous regularization of damage variables is often introduced to delay

the degradation of the composite; (2) the material properties of fasteners are defined as elastic-plastic,

while the protruding heads of fasteners fractured during the experimental tests, as shown in Figure 6.
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Figure 6. Experiment specimens.

The microscope images of damaged composite plates in the experimental tests and the prediction

of composite failure in the finite element are presented in Table 4. The bolt hole of the composite plate

was squeezed seriously by the bolt shank, causing several damage modes to occur such as matrix

crushing, fibers pulling out and fiber fracture. It can be seen that while the maximum stress, Hashin and

Puck criteria presented the same accuracy of prediction for fiber compression, the LaRc05 criteria could

predict the boundary of the damaged region well. For the matrix failure prediction, Larc05 and Puck

criteria were able to predict the damaged area of the matrix accurately; however, the damaged area

predicted by Hashin criteria was obviously larger than the experimental result, while the damaged

area was much smaller when predicted using maximum-stress criteria.
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Table 4. Failure phenomena of composite plates.

Failure of composite plate in experimental test

Failure of composite plate in finite element simulation
(SDV2 is the degree of fiber compression or kinking
failure; SDV4 is the degree of matrix
compression failure)

Plane  1

Plane  2 Plane  3

Plane  4

 

 

(a) Viewing above the Plane 1

(1) Maximum Stress

 

(2) Hashin

 

(3) Puck
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Table 4. Cont.
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Table 4. Cont.
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4.2. The Effect of Damage Variables

When the same failure criteria (LaRC05) were introduced with different damage variables in UMAT,

the numerical simulation results showed an obvious difference. Compared to the use of exponential

damage variables, sudden decrease damage variables reduced the bearing strength by 2.1%, as shown

in Figure 7. When the sudden decrease damage variables were used, the load-displacement curve

began to show a significant downward trend after the ultimate failure load was reached, which is close

to the experimental results. Unlike sudden decrease damage variables, which are directly equal to 1

when the value of the failure criteria expression is >1, exponential damage variables increase from

zero to 1 gradually with increases in the value of the criterion expression. The matrix stiffness of the

composite presented faster degradation when the sudden decrease damage variable was used, and the

damage propagation on the composite plates was faster as well.

Moreover, there was plastic deformation on the bolt head, screw and nut when the sudden

decrease damage variable was used in UMAT, which is closer to the experimental phenomenon shown

in Figure 8b,c. When the exponential damage variable was used, the plastic deformation of the fastener

occurred only in the middle of the screw, as shown in Figure 8a.
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Figure 7. Force-displacement curves obtained with different damage variables.

Displacement（mm）

  
(a) Plastic deformation of bolt when using 

exponential damage variable 

(b) Plastic deformation of bolt when using sudden 

decrease damage variable 

Obvious plastic deformation on the nut
 

(c) Bolt in specimen after tensile test 

Figure 8. Plastic deformation of a bolt.

4.3. The Effect of Subroutine

As the same failure criteria, damage variables and damage stiffness matrix were used in subroutine

USDFLD and UMAT, respectively, the difference in the ultimate failure load was 14.2%, as shown in

Figure 9. There were severe non-convergence in the USDFLD calculation process when the material

property of the bolt was defined as elastic-plastic, but this was avoided in the UMAT calculation

process. Unlike subroutine USDFLD, which can call strain and stress directly, subroutine UMAT can

only call strains directly, then calculate stress according to the damage stiffness matrix and strain of the
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composite. The damage variable is the regularized viscosity before the calculation of stress, making

the damage variable smaller than the real value and always less than 1, as shown in Equation (30).

In other words, the degradation of composite stiffness was delayed by the viscous regularization of the

damage variable, improving the convergence of the calculation.

dV =
η

η+ ∆t
∗ d′ +

∆t

η+ ∆t
∗ d′ (30)

where dV is damage variable of the current incremental step with regularized viscosity, η is the viscosity

coefficient, ∆t is the time increment, and d′ is the damage variable of the previous incremental step

with regularized viscosity.

𝑑𝑉 = 𝜂𝜂+Δ𝑡 ∗ 𝑑′ + Δ𝑡𝜂+Δ𝑡 ∗ 𝑑′𝑑𝑉 𝜂Δ𝑡 𝑑′
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Figure 9. Force-displacement curves obtained with different subroutines.

5. Conclusions

In order to improve the accuracy and efficiency of simulating the bearing behaviors of composite

bolted joints, the effects of failure criteria, damage variables and user subroutines were studied in this

paper, and experimental tests were carried out to compare numerical results. An approach based on

a derivative method was used to find the fiber misalignment angle and the matrix fracture angle by

applying LaRc05 criteria, and it was found this method had better efficiency than the conventional

ergodic method.

When combined with the same damage variable, the maximum stress, Hashin and Puck criteria

all presented the same accuracy at predicting fiber compression, and the LaRc05 criteria were able to

predict the boundary of the damaged region well. LaRc05 and Puck criteria presented more accurate

results than maximum-stress and Hashin criteria at predicting the matrix failure.

Compared to exponential damage variables, using the sudden decrease damage variables in

UMAT could more accurately replicate experimental results when combined with LaRc05 criteria.

As the same criteria and damage variables were incorporated in different user subroutines, there was

better convergence in UMAT calculation than USDFLD calculation.
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