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Dynamic analysis on single-rotor multi-
input helicopter main gearbox related
with structural parameters

Wei Zhang1,2 and Luling An1

Abstract

Combined with the finite element method and the lumped mass method, the integral node dynamic model of a single-

rotor multi-input helicopter main gearbox is established. The influence of shaft parameters on dynamic characteristics is

analyzed, and each torsional shaft is regarded as a finite element node to derive the system dynamic equation.

In addition, the dynamic model of the meshing pair element is established by lumped mass method, and these elements

not only include internal excitations such as time-varying meshing stiffness and transmission error, but also carry the

external load. The differential equations of the system are solved by the Fourier series method. The dynamic responses

of the converging element and the planetary gear train are obtained. The load-sharing coefficients of these elements are

calculated by the influence of the shaft structural parameters. A parameter optimization method is proposed to improve

the system load characteristics, which provides a theoretical support for the design of helicopter main transmis-

sion system.
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Introduction

The single-rotor multi-input helicopter main gearbox has three identical input branches, converging on a central

gear, then the power follows one way to the planetary gear system and the rotor, while the other way to the tail

chain. The transmission chain is quite long and it includes many branches, which makes the structure very

complicated. In addition, the system is under large load power and severe working conditions. The converging

element and the planetary gear train bear dynamic meshing forces in multiple directions, if the load cannot be

evenly distributed between the branches, and the carrying capacity will be reduced, resulting in component

overload and vibration. Its load-sharing characteristics analysis is for the sake of prolongling system life, reducing

vibration and improving system stability, which is regarded as the research hotspot.1–3 Therefore, the load-sharing

analysis is of great significance.
During the past several decades, some significant studies about solving the gearbox dynamic problems have

been proposed. About multi-stage gear analysis, Chong et al.4 proposed a generalized multi-stage gear drives

design methodology by integrating the dimensional design and the configuration design processes in a formalized

algorithm. Choy et al.5 presented a three-stage multi-mesh gear transmission systems, and predicted the overall
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system dynamics by the influence of transmissibility, input speed, rotor imbalances and support. Dzitkowski and

Dymarek6 applied the reduction method based on an active synthesis to obtain a desired mechanical effect by

properly selecting the dynamical system properties. Tanaka et al.7 predicted gear noise from the vibration step to

the sound-generation step in a multi-stage gear system, and analyzed the distribution of the sound-pressure

around the gearbox and identified the intense noise areas. Thompson et al.8 applied a basic multi-objective

optimization procedure to the design of a three-stage spur gear reduction system, which was subject to identical

loading conditions and design criteria.
Regarding load-sharing analysis, Kahraman9 defined load-sharing in a planetary gear sets by establishing the

mathematical model and validated in experimental work under quasi-static conditions. Bodas and Kahraman10

studied the effect of manufacturing and assembly error on load-sharing behavior in a planetary gear set. Sheng

et al.11,12 presented a new non-linear bending-torsional coupled model for double-row planetary gear set, and

studied the influence of planet’s eccentricity error and ring gear’s supporting stiffness on planetary gear train.

Sekar studied load-sharing ratio based on maximum fillet stresses through the asymmetric three-teeth helical

model by finite element method, and investigated the influence of gear ratio, transverse contact ratio, top land

thickness coefficient and the pinion teeth number.13 Nevertheless, the influence of shaft parameters on load-

sharing behavior has not been adequately analyzed in these researches.
In terms of FEM-LMM mixed gearbox modeling method, Choi et al.14,15 applied a finite element method with

distributed mass for lateral and torsional vibrations, and it was coupled to a lumped mass model describing the

axial vibrations, which is the mixed modeling methodology inspiration for this paper.
Stringer presented a comprehensive FEM transmission model by subcomponent, and the multi-node dynamic

model of the gearbox was combined with multiple shafts connected by multiple gears of different configurations.16

However, parameter optimization based on multi-node dynamic modeling has not been captured by

these researches.
About auxiliary parameter for nonlinear oscillators, several solving methods such as asymptotic method,

homotopy perturbation method, and variational iteration method have been presented by scholars.17–19 While

parameter analysis method for multi-stage gearbox has not been widely applied.
In summary, scholars have focused on the planetary gear train or the single meshing pair; however, the research

on the whole helicopter main gearbox has not been widely studied. More importantly, most scholars normally

make the derivation of equations in the meshing gear pair, and research on shafts nodes modeling is rarely seen in

gearbox dynamic analysis, so it is of great importance for the gearbox design.

Dynamic modeling of multi-node system

The dynamic model of a typical single-rotor multi-input helicopter main gearbox is shown in Figure 1. Figure 1(a)

is the system model and Figure 1(b) shows the multi-node model, which is based on the new method.
The main gearbox has a total of three input branches and two output branches (tail chain output branch and

rotor output branch).20 According to Figure 1, there are seven meshing elements (A, B, C, D, E and F) in the

system, and the elements F and G are internal and external meshing pairs in planetary system, which contains one

sun gear (node 16), six planet gears (nodes 17 to 22) and one carrier (node 23). h is the rotational degree of

freedom (DOF) of each node, and each DOF corresponds to one node. The system’s generalized coordinate

vector X is

X ¼
n
hðjÞ1 ; hðjÞ2 ; hðjÞ3 ; hðjÞ4 ; hðjÞ5 ; hðjÞ6 ; hðjÞ7 ; hðjÞ8 ; h9; h10; h11; h12; h13; h14h15; h16; h17; h18; h19; h20; h21; h22; h23; h24

oT

Dynamic modeling of the meshing pairs

For the seven meshing pairs labeled A, B, C, D, E, F, and G in Figure 1, the time-varying meshing stiffness can be

expressed in the Fourier series with meshing frequency x21

kðtÞ ¼ km þ kasinðxtþ bÞ
kspiðtÞ ¼ km;spi þ ka;spisinðxtþ bspiÞ
krpiðtÞ ¼ km;rpi þ ka;rpisinðxtþ brpiÞ

8><
>: (1)
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(a)

(b)

Figure 1. Dynamic model of the multi-node system. (a) Dynamic modeling. (b) Node modeling.
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where k(t), kspi(t) and krpi(t) are time-varying meshing stiffness of each gear pair; km and ka are the average and

maximum variable meshing stiffness; b is the initial phase of meshing stiffness; x is the fundamental mesh-

ing frequency.
Similarly, transmission errors are shown in the same way

eðtÞ ¼ em þ easinðxtþ uÞ
espiðtÞ ¼ Aspisinðxtþ uspiÞ þ EpisinðxpHtþ upi þ aÞ þ Essin½xsHtþ us � 2pði� 1Þ=Nþ a�
erpiðtÞ ¼ Arpisinðxtþ urpiÞ þ EpisinðxpHtþ upi � aÞ þ Ersin½xrHtþ ur � 2pði� 1Þ=N� a�

8><
>: (2)

where e(t), espi(t), erpi(t) are time-varying transmission error of each gear pair; em and ea are static and dynamic

transmission error amplitude; u is initial phase of transmission error; xpH, xsH and xrH are rotational frequency

of planet gear, sun gear and carrier; a is pressure angle; N is the number of planet gear.
The relative displacement along the meshing line X(t) is defined as follows

XðtÞ ¼ hdrd � hprp � eðtÞ (3)

where hd and hp are rotational response of drive gear and driven gear; rd and rp are radius of base circle in drive

gear and driven gear.
The dynamic forces of each gear pair F(t) are defined as follows

FðtÞ ¼ kðtÞXðtÞþcðtÞ _XðtÞ (4)

where c(t) is meshing damping; _XðtÞ is relative velocity along the meshing line.

Differential equation of multi-node system

According to the above dynamic modeling, the differential equation of the multi-node gearbox model can be

deduced through the Newton’s law, as is shown below:
Node 1

J1€h1
ðjÞþG1

pD4
1

32l1
1� d4

D4

� �
h1

ðjÞ ¼ TEj (5)

Node 2

J2€h2
ðjÞ þ F

pðjÞ
2 3ðtÞ þ F

dðjÞ
2 3ðtÞ

h i
r1þG1

pD4
1

32l1
1� d4

D4

� �
h2

ðjÞ � h1
ðjÞ� �

¼ 0 (6)

Node 3

J3€h3
ðjÞ � F

pðjÞ
2 3ðtÞ þ F

dðjÞ
2 3ðtÞ

h i
r1þG4

pD4
4

32l4
1� d44

D4
4

 !
h3

ðjÞ � h4
ðjÞ� �

¼ 0 (7)

Node 4

J4€h4
ðjÞ � G4

pD4
4

32l4
1� d44

D4
4

 !
h3

ðjÞ � h4
ðjÞ� �

þG4
pD4

4

32l4
1� d44

D4
4

 !
h4

ðjÞ � h5
ðjÞ� �

¼ 0 (8)

Node 5

J5€h5
ðjÞþ F

pðjÞ
5 6ðtÞ þ F

dðjÞ
5 6ðtÞ

h i
r5þG4

pD4
4

32l4
1� d44

D4
4

 !
h5

ðjÞ � h4
ðjÞ� �

¼ 0 (9)
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Node 6

J6€h6
ðjÞ � F

pðjÞ
5 6ðtÞ þ F

dðjÞ
5 6ðtÞ

h i
r6þG7

pD4
7

32l7
1� d47

D4
7

 !
h6

ðjÞ � h7
ðjÞ� �

¼ 0 (10)

Node 7

J7€h7
ðjÞ � G7

pD4
7

32l7
1� d47

D4
7

 !
h6

ðjÞ � h7
ðjÞ� �

þG7
pD4

7

32l7
1� d47

D4
7

 !
h7

ðjÞ � h8
ðjÞ� �

¼ 0 (11)

Node 8

J8€h8
ðjÞþ F

pðjÞ
8 9ðtÞ þ F

dðjÞ
8 9ðtÞ

h i
r8þG7

pD4
7

32l7
1� d47

D4
7

 !
h8

ðjÞ � h7
ðjÞ� �

¼ 0 (12)

Node 9

J9€h9 �
X3
j¼1

F
pðjÞ
8 9ðtÞ þ F

dðjÞ
8 9ðtÞ

h i
r9 þ G15

pD4
15

32l15
1� d415

D4
15

 !
h9 � h15ð Þ þ Fp

9 10ðtÞ þ Fd
9 10ðtÞ

h i
r9 ¼ 0 (13)

Node 10

J10€h10 � Fp
9 10ðtÞ þ Fd

9 10ðtÞ
h i

r10 þ G11
pD4

11

32l11
1� d411

D4
11

 !
h10 � h11ð Þ ¼ 0 (14)

Node 11

J11€h11 þ G11
pD4

11

32l11
1� d411

D4
11

 !
h11 � h12ð Þ � G11

pD4
11

32l11
1� d411

D4
11

 !
h10 � h11ð Þ ¼ 0 (15)

Node 12

J12€h12 þ Fp
12 13ðtÞ þ Fd

12 13ðtÞ
h i

r12 þ G11
pD4

11

32l11
1� d411

D4
11

 !
h12 � h11ð Þ ¼ 0 (16)

Node 13

J13€h13 � Fp
12 13ðtÞ þ Fd

12 13ðtÞ
h i

r13 þ G14
pD4

14

32l14
1� d414

D4
14

 !
h13 � h14ð Þ ¼ 0 (17)

Node 14

J14€h14 þ G14
pD4

14

32l14
1� d414

D4
14

 !
h14 ¼ Tt (18)
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Node 15

J15€h15 þ G15
pD4

15

32l15
1� d415

D4
15

 !
h15 � h16ð Þ � G15

pD4
15

32l15
1� d415

D4
15

 !
h9 � h15ð Þ ¼ 0 (19)

Node 16

J16€h16 þ
X6
i¼1

F
p
spiðtÞ þ Fd

spiðtÞ
h i

r16 þ G15
pD4

15

32l15
1� d415

D4
15

 !
h16 � h15ð Þ ¼ 0 (20)

Nodes 17–22 (pi)

Jpi€hpi � Fp
spiðtÞ þ Fd

spiðtÞ
h i

rpi þ Fp
cpiðtÞ þ Fd

cpiðtÞ
h i

rpi ¼ 0 (21)

Node 23

J23€h23 �
X6
i¼1

Fp
cpiðtÞ þ Fd

cpiðtÞ
h i

rpi þ G24
pD4

24

32l24
1� d424

D4
24

 !
h23 � h24ð Þ ¼ 0 (22)

Node 24

J24€h24 þ
X6
i¼1

Fp
cpiðtÞ þ Fd

cpiðtÞ
h i

rpi þ G24
pD4

24

32l24
1� d424

D4
24

 !
h24 � h23ð Þ ¼ �Tr (23)

where TEj is denoted as the torque of engine j (j ¼1,2,3); d is the internal diameter of the hollow shaft; D is the
external diameter of the hollow shaft; l is the shaft length; G is the shear elastic modulus of shaft; Tt is the output
torque of tail chain; Tr is the output torque of rotor shaft.

The equations for each DOF could be written as the following matrix – vector form

M½ � €Xf g þ C½ � _Xf g þ K½ � Xf g ¼ Ff g (24)

The excitation fFg could be expanded to Fourier series with the fundamental frequency, kth order excitation is

Fk ¼ A1f gksinxktþ A2f gkcosxkt (25)

The excitation would contribute to a certain response

Dxf gk ¼ B1f gksinxktþ B2f gkcosxkt (26)

where fB1gk and fB2gk could be solved by the following equation

�x2
k½M� þ ½ �K� �xk½C�
xk½C� �x2

k½M� þ ½ �K�

" #
B1f gk
B2f gk

( )
¼ A1f gk

A2f gk

( )
(27)

The dynamic response is linear superposition of the result corresponded by each order

DxðtÞ� � ¼
X5
k¼1

B1f gksinxktþ B2f gkcosxkt
� �

(28)
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Numerical calculation and dynamic analysis

Parameter setting and response calculation

The node parameters of the system are shown in Table 1. Besides, the system is powered by three engines, the

maximum output power of each engine is 1500 kW, output speed is 10,000 r/min. The output power of rotor is
1000 kW, the rotor speed is 300 r/min. The transmission mechanical efficiency is 95%.

In this paper, the Fourier series method is applied to solve the derived differential equations through compu-

tational programming, and the time-domain dynamic response of load-sharing-related DOF is obtained and

shown in Figure 2. It indicates that the dynamic response exhibits a periodic variation under multi-frequency
excitation caused by time-varying meshing stiffness and various errors. The three input branches are important

components in single-rotor multi-input helicopter main gearbox, they are in the same structure but different

excitation, and as a result, they show distinct response amplitude.
By comparison, it can be seen that the dynamic response of meshing element E has the maximum amplitude

due to the load of tail chain. In addition, under the converging influence of the three-input branches, the mag-

nitude of the response of the converging element (composed of the meshing pair C and D) is also relatively large,

and thus needs further analysis. Regarding the responses in the internal and external meshing pair (element F and
G), planetary gear 1 is greater than other planetary gears due to its largest transmission and manufacturing error.

Load-sharing coefficient calculation

Due to the manufacturing error, installation error, gear wear and other factors in the planetary gear train, the

load distribution on each gear pair is inconsistent. The converging element also has inconsistent load distribution
due to the multiple convergences of input branches. The basic assumption is that some factors like transmission

error and phase difference are intrinsically existing. A method is proposed by changing the thickness and length of

the shaft, and the load-sharing characteristics can be improved, thus providing technical support for the shaft

parameter design.
The load-sharing coefficient b is defined as the ratio of the maximum dynamic meshing force to the mean value

in separate branch

bðtÞ ¼ N Pkð ÞmaxXN

k¼1
Pkð Þmax

(29)

where Pk is the dynamic meshing force of k branch; N is the number of branches.
According to dynamic response and time-varying meshing stiffness, the meshing force could be calculated, and

then the load-sharing coefficients of the converging element and planetary gear systems could be computed, which

are depicted in Figure 3. The load-sharing coefficients also show the periodic variation under multi-frequency

excitation. The value of converging element is larger than that of the planetary gear system due to the complex

coupling impact of three input branches and tail chain. In terms of planetary gear systems, the external meshing
coefficient is larger than that of internal pair.

Analysis on load-sharing coefficient influenced by shaft wall thickness

The wall thickness is characterized by the ratio of the external diameter to the internal diameter of the hollow

shaft, which is symbolized as a. In this case study, 0.6 � a � 0.9 is originally set, and the influence of the thickness
on load-sharing coefficient at this interval is investigated. By changing the value of a in each shaft, the maximum

load-sharing coefficient is calculated without changing other parameters, and the result is shown in Figure 4.
Figure 4(a) shows that the load-sharing coefficient of converging element is the lowest (1.032) when a1 is 0.57.

If a1 is greater than 0.7, the load-sharing coefficient of internal meshing in the planetary gear is reduced, but the
change is not significant. The load-sharing coefficient of external meshing does not change with a1.

Figure 4(b) demonstrates that when a4 is greater than 0.8, the load-sharing coefficient of the converging

element decreases more significantly, while the other two stages do not change apparently. Therefore, the thin-
walled characteristics of Node 4 can improve the system stability.

Similarly, from Figure 4(c) to (e), it can be seen that when a7 is equal to 0.81, a11 is equal to 0.76, and a14 is
equal to 0.9, the load-sharing coefficient of the converging element can also be reduced. Among them, the
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influence of the shaft diameter ratio of Node 7 is the most obvious, and therefore it is the key shaft of the load-

sharing characteristics of this element.
According to Figure 4(f) and (g), the wall thickness of Node 15 and Node 24 are key factors in internal and

external meshing pairs, and when the diameter ratios are equal to 0.6, the system load-sharing characteristics tend

to be better.

Figure 2. Time-domain dynamic response in confluent stage. (a) Meshing pair C. (b) Meshing pair D. (c) Meshing pair F. (d) Meshing
pair G.

Figure 3. Time domain of load-sharing coefficient in the system. (a) Converging element. (b) Planetary gear train.
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Figure 4. Load-sharing coefficient influenced by wall thickness. (a) Node 1. (b) Node 4. (c) Node 7. (d) Node 11. (e) Node 14.
(f) Node 15. (g) Node 24.
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Figure 5. Load-sharing coefficient influenced by shaft length. (a) Node 1. (b) Node 4. (c) Node 7. (d) Node 11. (e) Node 14.
(f) Node 15. (g) Node 24.
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Analysis on load-sharing coefficient influenced by shaft length

The load-sharing coefficient is calculated by changing the shaft length of each node within the allowable range,

without changing other parameters, and the result is shown in Figure 5.
In Figure 5(a), it can be concluded that l1 is the most effective parameter in improving the load-sharing

characteristics of the converging element. When l1 is equal to 0.62 m, it is the turning point of the figure,

which can reduce the load-sharing coefficient to 1.01. Similarly, it could be noted from Figure 5(b) to (e) that

when l4 is 2.2 m, l7 is 3.0 m, l11 is 0.6 m, and l14 is 1.8 m, the load-sharing coefficient could be reduced as well, while

the other two elements are not affected. From Figure 5(f), the Node 15 is still the key shaft of the load-sharing

characteristics in the planetary gear system. When l15 is short, the system internal meshing load-sharing character-

istics tend to be better. The change in the length of the Node 24 does not affect the load-sharing coefficients of the

three elements.

Structural parameter optimization based on load-sharing coefficient analysis

Based on the above analysis, according to the relationship between the shaft parameters and the load-sharing

coefficient at each stage, the improved parameters at the shaft node are obtained, and thus the original parameters

Table 2. Parameter optimization of the hollow shaft.

a1 a4 a7 a11 a14 a15 a24

Parameter

Original group 0.75 0.8 0.7 0.73 0.7 0.8 0.78

Improved group 0.57 0.9 0.81 0.76 0.9 0.6 0.6

l1 l4 l7 l11 l14 l15 l24

Original group 0.8 1.6 2.2 1.4 1.1 0.8 2

Improved group 0.62 2.2 3 0.6 1.8 0.5 2

Figure 6. Load-sharing optimization. (a) The converging element. (b) The planetary gear train.

Table 3. Shaft node parameter optimization.

Converging

element

Internal

meshing

External

meshing

Original group 1.0613 1.014 1.053

Improved group 1.0074 1.0037 1.047

Optimization effect �5.1% �1.01% �0.98%
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are replaced with the improved, as is shown in Table 2. The load-sharing coefficients of the converging element

and planetary gear train are recalculated, and the improved effect is shown in Figure 6 and Table 3. As indicated

from the figure and the table, the waveform and phase of both elements do not make a change, but the load-

sharing coefficients have been significantly reduced. Since Node 1, Node 4, Node 7, Node 11 and Node 14 can

effectively improve the load-sharing characteristics in converging element, the coefficient of this element is reduced

by 5.1%, which is more effective than that of the other two elements. There are not many parameters affecting the

load-sharing coefficient of the planetary gear system, but the internal and external meshing pairs are still improved

by 1.01% and 0.98%, respectively.
In summary, a parameter optimization method to improve the system load-sharing characteristics is provided

for the gearbox design.

Conclusion

Based on the load-sharing characteristics analysis, this paper proposes a structural parameter optimization

method for single-rotor multi-input helicopter main gearbox. By establishing the multi-node dynamic model,

deducing coupling differential equations, and analyzing load-sharing coefficients of three stages, the influence law

of shaft thickness and shaft length is obtained. The results could draw the following conclusions:

1. The dynamic response shows a periodic variation under the multi-frequency excitation, and meshing elements

C, D, and E have relatively larger response.
2. Node 7, Node 15 and Node 24 are key nodes regarding load-sharing characteristics of the converging element,

internal and external meshing elements, respectively. By changing the wall thickness (shaft diameter ratio a),
the load-sharing coefficient could be reduced according to the corresponding influence law.

3. The length parameter of Node 1 has the most obvious effect on the improvement of the load-sharing character-

istics in the converging element; the length parameter of Node 15 is the key parameter related to the planetary

gear element; Length of the Node 24 does not affect the load-sharing coefficients in these elements.
4. By the structural parameter optimization method, the load-sharing coefficient of the original group can be

reduced by 5.1%, and the load-sharing characteristics of internal and external meshing pairs can be improved

by 1.01% and 0.98%, respectively.

Acknowledgements

The authors gratefully acknowledge the help of Professor Rupeng Zhu and Dr Yuan Chen for the guidance of the

final revision.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this

article: The work described in this paper is fully supported by Jiangsu Key Laboratory of Precision and Micro-manufacturing

Technology Foundation (Grant No.ZAA1400105); Aeronautical Science Foundation of China (Grant No.20161852018);

Innovation Fund of National Commercial Aircraft Manufacturing Engineering Technology (Grant No.SAMC13-JS-13-021).

ORCID iD

Wei Zhang https://orcid.org/0000-0002-8862-9772

References

1. Kahraman A. Load sharing characteristics of planetary transmissions. Mech Mach Theory 1994; 29: 1151–1165.
2. Li M, Xie L and Ding L. Load sharing analysis and reliability prediction for planetary gear train of helicopter.Mech Mach

Theory 2017; 115: 97–113.
3. Ren F, Qin D, Lim TC, et al. Study on dynamic characteristics and load sharing of a herringbone planetary gear with

manufacturing errors. Int J Precis Eng Manuf 2014; 15: 1925–1934.

Zhang and An 193

https://orcid.org/0000-0002-8862-9772
https://orcid.org/0000-0002-8862-9772


4. Chong TH, Bae I and Park GJ. A new and generalized methodology to design multi-stage gear drives by integrating the
dimensional and the configuration design process. Mech Mach Theory 2002; 37: 295–310.

5. Choy FK, Tu YK, Savage M, et al. Vibration signature and modal analysis of multi-stage gear transmission. J Franklin

Inst 1991; 328: 281–298.
6. Dzitkowski T and Dymarek A. Active reduction of identified machine drive system vibrations in the form of multi-stage

gear units. Mechanics 2014; 20: 183–189.
7. Tanaka E, Houjoh H, Mutoh D, et al. Vibration and sound-radiation analysis for designing a low-noise gearbox with a

multi-stage helical gear system. JSME Int J Ser C 2003; 46: 1178–1185.
8. Thompson DF, Gupta S and Shukla A. Tradeoff analysis in minimum volume design of multi-stage spur gear reduction

units. Mech Mach Theory 2000; 35: 609–627.
9. Kahraman A. Static load sharing characteristics of transmission planetary gear sets: model and experiment. SAE Transac

1999; 108: 1954–1963.
10. Bodas A and Kahraman A. Influence of carrier and gear manufacturing errors on the static load sharing behavior of

planetary gear sets. JSME Int J Ser C 2004; 47: 908–915.
11. Sheng DP, Zhu RP, Jin GH, et al. Dynamic load sharing characteristics and sun gear radial orbits of double-row planetary

gear train. J Cent South Univ 2015; 22: 3806–3816.
12. Sheng DP, Zhu RP, Jin GH, et al. Dynamic load sharing behavior of transverse-torsional coupled planetary gear train

with multiple clearances. J Cent South Univ 2015; 22: 2521–2532.
13. Sekar RP and Muthuveerappan G. Load sharing based maximum fillet stress analysis of asymmetric helical gears designed

through direct design – A parametric study. Mech Mach Theory 2014; 80: 84–102.
14. Choi SH, Glienicke J, Han DC, et al. Dynamic gear loads due to coupled lateral, torsional and axial vibrations in a helical

geared system. J Vib Acoust 1999; 121: 141–148.
15. Choi SH, Pierre C and Ulsoy AG. Consistent modeling of rotating Timoshenko shafts subject to axial loads. J Vib Acoust

1992; 114: 249–259.
16. Stringer DB, Sheth PN and Allaire PE. A new helicopter transmission model for condition-based maintenance technol-

ogies using first principles. In: 45th AIAA/ASME/SAE/ASEE joint propulsion conference & exhibit, Cleveland, Ohio, USA,
September 2009, p.4887.

17. He JH. Some asymptotic methods for strongly nonlinear equations. Int J Mod Phys B 2006; 20: 1141–1199.
18. He JH. Recent development of the homotopy perturbation method. Topologic Meth Nonlinear Anal 2008; 31: 205–209.
19. Ahmad H. Variational iteration method with an auxiliary parameter for solving differential equations of the fifth order.

Nonlinear Sci Lett A 2018; 9: 27–35.
20. Bianchi A and Rossi S. Modeling and finite element analysis of a complex helicopter transmission including housing.

Shafts Gears 1997: 61–76.
21. Chen Y, Zhu RP, Xiong YP, et al. Analysis on natural characteristics of four-stage main transmission system in three-

engine helicopter. Vibroeng Proc 2017; 12: 19–23.

194 Journal of Low Frequency Noise, Vibration and Active Control 40(1)


