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Abstract 

This article presents a new method for G2 continuous interpolation of an arbitrary sequence of points on an implicit or para-
metric surface with prescribed tangent direction and curvature vector, respectively, at every point. First, a G2 continuous curve 
is constructed in three-dimensional space. Then the curve is projected normally onto the given surface. The desired interpola-
tion curve is just the projection curve, which can be obtained by numerically solving the initial-value problems for a system of 
first-order ordinary differential equations in the parametric domain for parametric case or in three-dimensional space for im-
plicit case. Several shape parameters are introduced into the resulting curve, which can be used in subsequent interactive modi-
fication so that the shape of the resulting curve meets our demand. The presented method is independent of the geometry and 
parameterization of the base surface. Numerical experiments demonstrate that it is effective and potentially useful in numerical 
control (NC) machining, path planning for robotic fibre placement, patterns design on surface and other industrial and research 
fields. 
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1. Introduction1

In numerical control (NC) machining of parametric 
surface, one often needs to guide a cutting tool to 
change its tool-path from one to another with con-
tinuous acceleration. In blended-wing-body (BWB) 
design for both civilian and military aircraft, one 
must first construct two contact curves on wing sur-
face and fuselage surface, according to a set of points 
along with the necessary geometric information, such 
as the tangent and curvature vectors. Those issues 
can be reduced to G2 blending of two specified sur-
face curves or G2 interpolation of a sequence of 
points on surface. Actually, blending curve[1] on sur-
faces is a special case of interpolation curve on sur-
faces. 

As far as G2 interpolation on a given surface is 
concerned, H. Pottmann, et al.[2] presented a varia-
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tional approach to spline curves on surfaces. They 
characterized interpolating and approximating mini-
mizers on surfaces of arbitrary finite dimension and 
co-dimension. The minimizers possess a characteri-
zation which is very similar to the familiar cubic C2 
splines: the fourth derivative of a cubic vanishes and 
so does the tangential component of the fourth de-
rivative of spline segments in surface. Those authors 
aiming at variational curve design characterized the 
minimizers of an intrinsic geometric counterpart to 
the L2 norm of the second derivative, which is inte-
gral of the squared covariant derivative of the first 
derivative with respect to arc length. M. Hofer, et al.[3] 
discussed energy - minimizing splines in manifolds. 
It is good that both variational and energy-mini- 
mizing approaches can, in a sense, give an optimal 
solution for curve interpolating data points on sur-
faces and thus surface curve designed by these 
methods is overall tight. However the optimal solu-
tion does not have any local properties and degrees 
of freedom for shape control which are mostly im-
portant for interactive design in computer aided de-
sign (CAD) and computer graphics (CG). For exam-
ple, to modify a certain curve segment one must 
change data points and restart the entire process of Open access under CC BY-NC-ND license.
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curve design. Another method being able to use in 
interactive design was given by E. Hartmann[1]. 
However in practical application, we found that,  in 
addition to the complex implementation process 
(firstly construct a blending surface and then conduct 
surface-to-surface intersection or trace an implicit 
plane curve), the other drawback of the method is 
that the resulting curve sometimes unlikely preserves 
G1 continuity at inner points between interpolation 
points,  since the new blended surface does not al-
ways intersect the base surface transversally even if 
the base surface is special surface such as sphere or 
other quadrics. An improvement was made in Ref.[4], 
where surface curve design problem is reduced to 
that of finding the zero set of a bivariate polynomial 
of relatively low degree in the parameter space. 
However, implementation process is still complicated 
for it involves tracing an implicit curve in plane. 
Moreover, J. Pegna, et al.[5] once developed a method 
of orthogonally projecting a space curve onto the 
surface, which can be comprehensively used in sur-
face trimming,  blending and patching. However the 
method cannot be used for truly designing a curve on 
a surface, for example, fitting a sequence of data 
points on surface to create a surface curve. We once 
improved this orthogonal projection method[6]. Other 
related theoretic researches can be found in 
Refs.[7]-[11]. 

In this article, we develop a new method to over-
come the drawbacks in the existing methods[1, 4]. As it 
is well known, a curve on a surface is usually ex-
pressed in the form of differential equations. Here, 
making use of traditional differential geometric 
method, we will give a new solution for designing G2 
continuous curve on a surface. We focus our investi-
gation on the problem of G2 continuously interpolat-
ing a range of data points on a surface with pre-
scribed tangent direction at every point. 

2. Mathematical Preliminaries 

Let us begin with a differentiable parametric sur-
face that is described by a vector-valued function of 
two variables as follows: 

2

( , ) ( , ) ( , ) ( , )

( , )

u v x u v y u v z u v

u v D R

S

       (1) 

where x(u, v), y(u, v), z(u, v) are differentiable bivari-
ate functions of u and v, which are called the surface 
parameters, and D denotes the surface domain. The 
partial derivatives of the vector valued function S 
with respect to u and v are Su (u, v), Sv (u, v), (u, v)  
D. The vector N = Su × Sv /|Su × Sv | is called the unit 
normal vector (or just normal vector for short) of the 

surface S at the corresponding point. We assume the 
surface S is regular, i.e., Su × Sv  0 for any (u, v) 

D. A curve on the surface can be described by pa-
rametric equations u= u (t), v= v (t), t  [ a, b ] in 
the surface domain. Its equation in R3 can be written 
as the vector-valued function 

( ) ( ( ), ( ) ) [ , ]t u t v t t a bP S       (2) 
Taking the derivative of P (t) with respect to t to 

linearize Eq. (2), we get the following corresponding 
equation in the tangent space of the surface: 

( ) d / d d / d [ , ]u vt u t v t t a bP S S    (3) 
Let S be a C2 regular parametric surface. It follows 

from classical differential geometry[12] that 
2 2 2
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where I and II are known as the first and the second 
fundamental form respectively, while “·” indicates 
the scalar product (same as below). In addition, along 
the curve P (t), the normal vector N is 

( ) ( ( ) , ( ) )t u t v tN N  
Then we have the following equations: 

11 21

12 22

u u v

u v

a a
v a a

N S S
N S S

          (4) 

where 
2

11
2

12
2

21
2

22

( ) /( )

( ) /( )

( ) /( )

( ) /( )

a fF eG EG F

a gF fG EG F

a eF fE EG F

a fF gE EG F

 

Further there is 
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Now let us consider implicit surfaces f(x, y, z)=0, 
where the first partial derivatives /xf f x , 

/yf f y , /zf f z  are continuous and not all 
zero, everywhere on the surface, i. e., the surface is 
regular. The vector f  = [ xf  yf  zf ] is called the 
gradient of the implicit surface at the point (x, y, z). 
The vector / | |f fN  is the unit normal vector 
of the implicit surface at the point ( x, y, z ). The 
Jacobian of the gradient f  is called the Hessian of 
f. Write it as H (f) =J ( f ). A curve on the implicit 
surface is described by parametric form 

( ) ( ) ( ) ( )t x t y t z tP . It is characterized by 
the following equation f(x(t), y(t), z(t))=0. Lineariz-
ing it, we get 
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d / d d / d d / d 0x y zf x t f y t f z t      (6) 
In addition, similarly to Eq. (5) we have 

'( ) '( ) ( )[ ( ) ( )] / | |Tt t H f I t t fN P N N      (7) 
Finally one vector identity should be mentioned 

here for applications in the following discussion. For 
any three vectors a, b, c it follows that 

( ) ( ) ( )a b c a c b b c a        (8) 

3. Computing Normal Projection Curve 

Considering the complexity of the base surface, 
the projection curve may be comprised of several 
disconnected segments. Moreover, for a space curve, 
the normal projection may result in a set of different 
projection curves on the surface. We mainly describe 
how to trace one such connected curve. In addition, if 
not stated otherwise, we focus our discussion on a 
kind of base surface without boundary.  
 

Let C(t) be the parametric representation of a space 
curve that we want to project normally onto a surface 

S. The projection curve P(t) thus inherits the pa-
rameter of the space curve C(t) and is continuous. J. 
Pegna[5] once discussed the computation of first or-
dered projection curve. Here we deduce the equation 
of the projection curve in another way. Assume that 
the space curve C (t) is continuous and differentiable. 
The normal projection is characterized by 

[ ( ) ( )] ( ) 0t t tC P N         (9) 
Taking the derivative of Eq.(9) with respect to t

and using Eq. (3) and Eq. (5), we obtain 
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Calculating the cross product of the coefficient 

vectors of du/dv and dv/du in Eq. (10) with both sides 
of Eq. (10) respectively, using Eq. (8) and then taking 
the dot product of N and both sides of the resulting 
equation, we finally have
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if the space curve C(t) does not pass through the 
centers of principal curvature of the surface at the 
corresponding point P(t) (i. e. , the denominator in 
Eq. (11) is non-zero).  

For system Eq. (11) to be completely determined, 
the following initial-valued conditions on the surface 
domain D must be added. 

0

0

(0)
(0)

u u
v v

            (12) 

Once the system of Eqs. (11)-(12) is solved by nu-
merically integrating u and v, the space parametric 
equation of the projection curve can be got by sub-
stituting u and v into Eq.(2). 

In the implicit case, the normal projection is also 
characterized by Eq.(9). Taking the derivative of 
Eq.(9) with respect to t, taking the cross product of N 
and both sides of the resulting equation and using      
Eqs.(6)-(8), we obtain 
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if the space curve C (t)does not pass through the 
centers of principal curvature of the surface at the 
corresponding point P(t) (i. e. , the existence of the 

inverse matrix in Eq.(13) is guaranteed).  
Similarly to the parametric case, adding an initial 

value conditions to Eq. (13) as follows: 
0

0

0

(0)
(0)
(0)

x x
y y
z z

            (14) 

we get an initial value problem for a first-order sys-
tem of ordinary differential equations. Numerically 
integrating it, the projection curve can be obtained. 

4.  Surface Curve Design 

4. 1.  G2 continuous curves 

Specify a sequence of the points Pi( i =1, 2,…, n) 
on a Cr(r 3) regular surface S. Assume that its cor-
responding parameterizations are described by a se-
quence of real numbers ti( i =0, 1, …, n). Also specify 
a sequence of tangent directions Ti( i =0, 1,…, n) on 
the surface S and give a sequence of vectors ki. Con-
struct a curve lying on the surface S and passing the 
points Pi( i =1, 2, …, n) on condition that the curve’s 
tangent directions and curvature vectors at the points 
Pi are Ti and ki respectively. We only consider one 
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pair of triplets, such as(Pi, Ti, ki) and (Pi +1, Ti +1, 
ki +1). Our tactic is to construct a space curve seg-
ment Ci(t) with the corresponding triplets(Pi, Ti, 
C i(0))and(Pi+1,Ti +1,C i+1 (1)) and then project it 
onto the surface S to get the curve segment Pi (t). 

First we would like to give the following proposi-
tion: 

Lemma 1  For a space C2 curve r(t), k is curva-
ture vector if and only if the following holds 

2( ) ( ) / | ( ) | | ( ) |t t t tr r r r k    (15) 
where   is an arbitrary constant. 

Let ( , ) ( , ) ( , ) ( , )u v x u v y u v z u vS be a C2 
regular parametric surface. We have the following 
conclusions. 

Lemma 2  Let T correspond to du/dv and N be a 
unit tangent vector and a unit normal vector of S at 
the point P respectively. Then k (T k) can be the 
curvature vector of a curve lying on S, passing P and 
having T as its tangent vector at P if and only if the 
following holds 

(d ,d )
(d ,d )

II u v
I u v P

k N  

From Lemma 2 we know that ki described in the 
first paragraph in Subsection 4.1 cannot be arbitrary 
vectors and must satisfy 

(d ,d )
(d ,d )
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i i

i i

II u v
I u vi i

P

k N  

Lemma 3  Let T and N be a unit tangent vector 
and a unit normal vector of S at the point P respec-
tively. k is the curvature vector of some or other 
curve lying on S, passing P and having T as its tan-
gent vector at P. r(t)is an arbitrary curve lying on S, 
passing P and having T as its tangent vector at P. 
Then it follows at P that 

( ) ( )t t2r k N r N  
Theorem  Let T and N be a unit tangent vector 

and a unit normal vector of S at the point P respec-
tively. k is the curvature vector of some or other 
curve lying on S, passing P and having T as its tan-
gent vector at P.c(t)is a C2 space curve passing P and 
having T as its tangent vector at P. r(t) is the normal 
projection curve of c(t) onto S. Then at P the fol-
lowing equalities hold: 
1) ( ) ( )t tc r  

2) 2( ) ( ) ( ( ) ( ) )t t t tc r c N r k N N  
Proof  The projection is characterized by 

( ) ( ) ( ) ( )t t t tc r N         (16) 
By taking the derivative of Eq. (16) with respect to 

t, the relationship between the corresponding tangent 
vectors of space curve and its projection curve on the 
surface S can be deduced as follows: 

( ) ( ) ( ) ( ) ( ) ( )t t t t t tc r N N     (17) 
From Eq.(16), we have ( ) 0t at P. Thus from 

Eq.(17), at P it follows that 
( ) ( ) ( )t t t mc r N  

Therefore ( ) 0t and at P there is 
( ) ( )t tc r             (18) 

In addition, from Eq.(17), the relationship between 
the corresponding second derivative vectors of space 
curve and its projection curve on the surface S can be 
described as follows: 

( ) ( ) ( ) ( )
2 ( ) ( ) ( ) ( )

t t t t
t t t t
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Further, at P it follows that 
( ) ( ) ( )t t tc r N         (19) 

From Eqs.(18)-(19) and Lemma 3, the equality 2) 
can be easily proved. 

Let the normal vectors of the surface S at 1,i iP P  
be 1,i iN N  respectively. We would rather assume 
that the 1,i iP P  are neighboring in the following 
sense [1].The absolute value of the angles between the 
normal vectors 1,i iN N  should be less than 180°. 
For a fixed i, take ( )i itiC P , 1 1( )i itiC P , 

1( )i i itiC T  and 1 2 1( )i i itiC T , where  is a 
positive constant. From Theorem, we further take 

2 2
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Then taking 0 1 0 1 0( ), ( ), ( ), ( ), ( ),F s F s G s G s H s 1( )H s   
as one group of five degree Hermite blending func-
tions, we design a space quintic Hermite curve 

( )tiC  as follows: 

0 1 1 0 1
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1 2 1 0 1 1
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where 1( ) /( )i i is t t t t  and 1[ , ]i it t t . 
With the method described in Subsection 3.1, we 

then project ( )tiC normally onto surface S, i.e., we 
can obtain the first-order ordinary differential equa-
tions of the projection curve ( )tiP  with initial con-
ditions for both parametric and implicit representa-
tions of the base surface S. For a fixed i, the projec-
tion curve ( )tiP  is just the desired curve that inter-
polates the data points 1,i iP P  with the prescribed 
tangent directions 1,i iT T  and curvature vectors 
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1,i ik k  at corresponding points. 
As a matter of fact, from Theorem we have 

1( ) ( )i i it ti i iP C T  and 2
1 1" ( )i i i i it iP T k . 

Then from Lemma 1 the curve ( )tiP  has the curva-
ture vector ik  at the point iP . Similarly the conclu-
sions hold at the point 1iP . 

Letting 1, 2, , 1i n , we get a sequence of 
space curve segments ( )i tC .Then projecting every 
curve segment ( )i tC  normally onto the surface S, 
we finally obtain a sequence of projection curve seg-
ments ( )i tP , 1, 2, , 1i n . The composite curve 

1

0 s
0

( ) ( ) [ , ]
n

i
t t t t tiP P          (20) 

is just what we want. 

4.2. G2 blending curves 

The method for interpolating a sequence of points 
on surface can be used directly in constructing a G2 
blending curve (transition curve) between two given 
curves parametrically or implicitly on a parametric 
surface. The G2 blending curve is completely deter-
mined by the tangents and curvatures at the two ends 
of the transition curve segment and has nothing to do 
with the global geometry and representation of two 
given curves. In contrast to general interpolation 
problem, we must first specify two points on two 
curves, compute the tangent directions or curvatures 
of two surface curves at the two points respectively, 
and use them as interpolation conditions. Then the 
remainder for us to do is similar to dealing with the 
interpolation issue. As for curvature computation of 
surface curves with all kinds of expression form, one 
can use the formula given out in Ref. [1]. 

4.3. Degenerate cases 

How do we do when one of curve segments ( )i tC  
happens to pass one center of principle curvature of 
the surface at a point of its orthogonal projective 
curve ( )i tP , which means the corresponding system 
of equations collapses? We give two ways as answers 
to the question above. One way is to insert additional 
interpolation data into the sequence of points 

, 0, ,i i sP . For example, if 0( )i tC  happens to be 
one center of principal curvature of the surface S at 
the point 0( )i tP , then insert 0( )i tP  between the 
points iP and 1iP . 

Let ( ) ( ) ( ) ( )i it t t tC P N . If one of the fol-
lowing conclusions holds: 
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then take the unit projective vector Ti0 of 0( )i tC  
onto the tangent plane of surface at 0( )i tP  as tan-
gent direction. Of course, here we cannot use Eq. (11) 
or Eq.(17) to compute Ti0 . Obviously the direction of 
the orthogonal projective vector of ( )i tC  onto the 
tangent plane of surface at the corresponding point is 
determined by du/dv or dv/du. For example, from 
Eq.(3) we have 

d( ) //
di u v
ut
v

P S S            (21) 

Moreover, take 

0
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12 22
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d
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u
a au t

vv a a
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    (22) 

Then Ti0 can be obtained with Eqs.(21)-(22). Oth-
erwise we estimate a tangent vector at 0( )i tP  with 
those at iP  and 1iP  through the method presented 
in Ref.[1].We must additionally estimate the curva-
ture vector at 0( )i tP with the method[1]. Finally, restart 
the above-mentioned interpolation process between 
data points iP  and 0( )i tP , and 0( )i tP  and 1iP . 

However, another way is to make the space curve 
segment far enough from the surface S, which has 
two non-zero principal curvatures everywhere. Take 

(0) and (1) as positive or negative constants, 
whose absolute values are large enough, and let 

(0)iC and (1)iC be perpendicular to iN and 

1iN respectively. 
Set 
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to construct Hermite curve ( )i tC  as above and then 
project it onto S, where (0)iN  and 1(1)iN can be 
calculated by 

1
11 21

12 22

0
( ) ( ) 0

0 0 1

a a
t t a a

u u

v v

u v u v

S S
N P S S

S S S S
 

for the parametric case or by Eq.(7)for the implicit 
case. 

(0)iN and 1(1)iN can be calculated by taking the 
second derivative of Eq.(5) and Eq.(9) with respect to 
t, and using Eq.(5) for the parametric case, or by 
taking the second derivative of Eq.(7) and Eq.(9) 
with respect to t, and using Eq.(7) for the implicit 
case. 

Remark 1  The constants , provide some 
freedoms in designing curve. Consequently, they can 
be used as control parameters to modify the desired 
curve so that its shape meets our demand better. 
However one must pay particular attention to the fact 
that the overlarge value of these parameters might 
cause an undesirable cups or loop on the curve.  

Remark 2  If the base surface is a sphere, then 
the orthogonal projection curve of a space curve (not 
passing the spherical center) onto the sphere can be 
described by an explicit equation instead of by a pro-
cedural curve[13]. 

5. Numerical Integration 

The presented method makes use of numerical in-
tegration techniques feasible for first-order explicit 
ordinary differential equations (ODEs) systems asso-
ciated with initial value problems. The desired sur-
face curves for all cases can be obtained by solving 
their corresponding initial value problems. Neverthe-
less, there are no analytical solutions for the system 
of first order ODEs presented in the article except 
some special surfaces such as sphere[13], etc. In gen-
eral, to deal with the most typical surface in CAD we 
can solve the systems very efficiently by using stan-

dard numerical techniques. For example, the ODEs 
solver of MATLAB[14] or Numerical Recipes[15], 
based on Runge-Kutta, Adams-Bashforth and other 
numerical methods can be used to solve these sys-
tems. In addition, these solvers provide user with 
good controls of tolerance[16]. 

Generally speaking, the presented method works 
well for any parametric or implicit surface. It should 
be emphasized, however, that some special cases 
need a careful analysis. For instance, if the surface is 
composed of several piecewise continuous surface 
patches, some kind of continuity conditions must be 
considered to ensure that the differential model is still 
valid in the neighborhood of each patch boundary. 

In practical application, we may demand that the 
resulting curve should be described in the standard 
form such as B-spline or non-uniform rational 
B-splines (NURBS). However, the preceding nu-
merical integrating yields an array of points in para-
metric domain and hence in the surface. Fortunately, 
using, for example, a cubic B-spline to interpolate 
those points on the surface we can create a closed 
form B-spline approximation of projection curve. 
Here the particular approximation method [17-18] de-
veloped by F.E. Wolter and J. Qu can be used to ob-
tain good accuracy. Moreover, based on the method 
[19] we can also get the B-spline approximation of the 
resulting curve with the array of points in the para-
metric domain. 

6. Implementation Examples 

Actually the presented method can be applied to 
any implicit or parametric surface, including Bezier, 
B-spline and NURBS surface that are popular in 
CAD and CG. However, for the sake of simplicity, 
we only take a Bézier surface as the base surface in 
the parametric and implicit surface cases respectively 
to demonstrate their effectiveness. The control points 
of B zier surface are(–4, 4, –1), (–4, 0, 3), (–4, –4, 
–1), (0, 4, 3), (0, 0, 6), (0, –4, 3), (4, 4, –1), (4, 0, 3), 
(4, –4, –1).  

Fig.1 shows how to design a G2 continuous curve 
on B zier surface S, which interpolates only a pair of 
points, such as P0, P1, with the prescribed unit vec-
tors T0, T1 and curvature vectors k1,k2 at correspond-
ing points on B zier surface S, where the curve P(t)is 
the desired curve. We first design a space curve 
C(t)with Hermite interpolation method and then pro-
ject orthogonally the curve C(t)onto B zier surface to 
create the curve P(t).Fig.2 shows a G2 continuous 
curve on B zier surface S. The curve is defined by 
three points P0, P1, P2 with the prescribed unit vec-
tors T0, T1, T2 and curvature vectors k0, k1, k2 at cor-
responding points. Fig.3 illustrates the G2 continuous 
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blending curve of two curves on surface S, i.e., the 
blending curve segment 01 and curves  0 have 
common tangent direction and common curvature 
vectors at P0,  1, and the same is true for  01 and 
curves  1 at P1. Fig.4 indicates a G2 continuous ini-
tial path designed by the presented method for ro-
botic fibre placement in producing fibre-reinforced 
composite components. 

 

 
 

Fig.1  Design procedure for G2 interpolation curve on 
Bézier surface. 

 

 
 

Fig.2  G2 continuous curve on Bézier surface. 
 

 
 

Fig.3  G2 blending curve of two curves on Bézier surface. 
 

 
 

Fig.4  An initial path P0(t)designed by our method over a 
mould surface. 

7. Conclusions 

This article develops a method for constructing a 
G2 continuous curve lying on a surface. 

(1) The method has good local properties and rea-
sonably good flexibility in shape control of the re-
sulting curves, in contrast to the most related meth-
ods for curves design on surfaces. Compared with the 
existing method for G2 interpolation and blending on 
surfaces, the presented one gives directly the 
first-order ordinary differential equations of the de-
sired interpolation curve, thus avoiding using any 
surface/surface intersection algorithms(which is usu-
ally a troublesome process), and can guarantee the 
existence of the interpolation curve.  

(2) The method is also applicable to the feature de-
sign or pattern design on surfaces in some related 
industrial fields.Other potential applications might 
appear in path planning for robotic fibre placement 
toward producing fibre-reinforced composite com-
ponents. 
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