17 research outputs found

    Towards a general solution to the linear Heisenberg problem

    Get PDF
    The construction of a complete set of stationary states of the linear Heisenberg system with periodic boundary conditions (rings) has been a topic of intensive research for many decades. Many eminent theoreticians have made their contribution to this joint eort, but we should mention in the rst place the epoch-making work of Bethe 1 and Hulthen. 5 Their work is the basis of many papers on this topic that have appeared during the past 70 years. We do no have the intention to give a complete survey of all this work but we will try to indicate that especially an asymptotic approach starting from the Hypothesis of Strings gives the prospect of a general and complete solution of the Heisenberg chain

    Magnetic translation groups in an n-dimensional torus

    Get PDF
    A charged particle in a uniform magnetic field in a two-dimensional torus has a discrete noncommutative translation symmetry instead of a continuous commutative translation symmetry. We study topology and symmetry of a particle in a magnetic field in a torus of arbitrary dimensions. The magnetic translation group (MTG) is defined as a group of translations that leave the gauge field invariant. We show that the MTG on an n-dimensional torus is isomorphic to a central extension of a cyclic group Z_{nu_1} x ... x Z_{nu_{2l}} x T^m by U(1) with 2l+m=n. We construct and classify irreducible unitary representations of the MTG on a three-torus and apply the representation theory to three examples. We shortly describe a representation theory for a general n-torus. The MTG on an n-torus can be regarded as a generalization of the so-called noncommutative torus.Comment: 29 pages, LaTeX2e, title changed, re-organized, to be published in Journal of Mathematical Physic

    Hierarchical Dobinski-type relations via substitution and the moment problem

    Full text link
    We consider the transformation properties of integer sequences arising from the normal ordering of exponentiated boson ([a,a*]=1) monomials of the form exp(x (a*)^r a), r=1,2,..., under the composition of their exponential generating functions (egf). They turn out to be of Sheffer-type. We demonstrate that two key properties of these sequences remain preserved under substitutional composition: (a)the property of being the solution of the Stieltjes moment problem; and (b) the representation of these sequences through infinite series (Dobinski-type relations). We present a number of examples of such composition satisfying properties (a) and (b). We obtain new Dobinski-type formulas and solve the associated moment problem for several hierarchically defined combinatorial families of sequences.Comment: 14 pages, 31 reference

    Neel probability and spin correlations in some nonmagnetic and nondegenerate states of hexanuclear antiferromagnetic ring Fe6: Application of algebraic combinatorics to finite Heisenberg spin systems

    Full text link
    The spin correlations \omega^z_r, r=1,2,3, and the probability p_N$ of finding a system in the Neel state for the antiferromagnetic ring Fe(III)6 (the so-called `small ferric wheel') are calculated. States with magnetization M=0, total spin 0<=S<=15 and labeled by two (out of four) one-dimensional irreducible representations (irreps) of the point symmetry group D_6 are taken into account. This choice follows from importance of these irreps in analyzing low-lying states in each S-multiplet. Taking into account the Clebsch--Gordan coefficients for coupling total spins of sublattices (SA=SB=15/2) the global Neel probability p*_N can be determined. Dependencies of these quantities on state energy (per bond and in the units of exchange integral J) and the total spin S are analyzed. Providing we have determined p_N(S) etc. for other antiferromagnetic rings (Fe10, for instance) we could try to approximate results for the largest synthesized ferric wheel Fe18. Since thermodynamic properties of Fe6 have been investigated recently, in the present considerations they are not discussed, but only used to verify obtained values of eigenenergies. Numerical results re calculated with high precision using two main tools: (i) thorough analysis of symmetry properties including methods of algebraic combinatorics and (ii) multiple precision arithmetic library GMP. The system considered yields more than 45 thousands basic states (the so-called Ising configurations), but application of the method proposed reduces this problem to 20-dimensional eigenproblem for the ground state (S=0). The largest eigenproblem has to be solved for S=4; its dimension is 60. These two facts (high precision and small resultant eigenproblems) confirm efficiency and usefulness of such an approach, so it is briefly discussed here.Comment: 13 pages, 7 figs, 5 tabs, revtex

    Statistical Mechanics and the Physics of the Many-Particle Model Systems

    Full text link
    The development of methods of quantum statistical mechanics is considered in light of their applications to quantum solid-state theory. We discuss fundamental problems of the physics of magnetic materials and the methods of the quantum theory of magnetism, including the method of two-time temperature Green's functions, which is widely used in various physical problems of many-particle systems with interaction. Quantum cooperative effects and quasiparticle dynamics in the basic microscopic models of quantum theory of magnetism: the Heisenberg model, the Hubbard model, the Anderson Model, and the spin-fermion model are considered in the framework of novel self-consistent-field approximation. We present a comparative analysis of these models; in particular, we compare their applicability for description of complex magnetic materials. The concepts of broken symmetry, quantum protectorate, and quasiaverages are analyzed in the context of quantum theory of magnetism and theory of superconductivity. The notion of broken symmetry is presented within the nonequilibrium statistical operator approach developed by D.N. Zubarev. In the framework of the latter approach we discuss the derivation of kinetic equations for a system in a thermal bath. Finally, the results of investigation of the dynamic behavior of a particle in an environment, taking into account dissipative effects, are presented.Comment: 77 pages, 1 figure, Refs.37

    Bethe Ansatz and Geometry of the Classical Configuration Space

    No full text
    We demonstrate that the seminal one-dimensional model of the Heisenberg magnet, consisting of N spins 1/2 with the nearest-neighbour isotropic interaction, solved exactly by Bethe ansatz, admits an interpretation of a system of r=N/2-M pseudoparticles (spin deviations) which are indistinguishable, have hard cores and move on the chain by local hoppings. Such an approach allows us to construct a manifold with some boundaries, which is genericly r-dimensional, and whose F-dimensional regions, 0<F<r, point out all l-strings. The latter classify, in terms of rigged string configurations of Kerov, Kirillov and Reshetikhin, all exact Bethe eigenfunctions. In this way, we interpret these eigenfunctions in terms of the classical configuration space, in particular on the structure of islands of adjacent spin deviations, in a way independent of the size N

    Bethe Ansatz and Geometry of the Classical Configuration Space

    No full text
    We demonstrate that the seminal one-dimensional model of the Heisenberg magnet, consisting of N spins 1/2 with the nearest-neighbour isotropic interaction, solved exactly by Bethe ansatz, admits an interpretation of a system of r=N/2-M pseudoparticles (spin deviations) which are indistinguishable, have hard cores and move on the chain by local hoppings. Such an approach allows us to construct a manifold with some boundaries, which is genericly r-dimensional, and whose F-dimensional regions, 0<F<r, point out all l-strings. The latter classify, in terms of rigged string configurations of Kerov, Kirillov and Reshetikhin, all exact Bethe eigenfunctions. In this way, we interpret these eigenfunctions in terms of the classical configuration space, in particular on the structure of islands of adjacent spin deviations, in a way independent of the size N

    Point Group Interpretation of Galois Symmetry of Bethe Ansatz Solutions of Magnetic Pentagonal Ring

    No full text
    Exact solutions of the eigenproblem of the magnetic pentagonal ring exhibit the arithmetic symmetry expressed in terms of a Galois group of a finite extension of the prime field Q of rationals. We propose here a geometric interpretation of this symmetry in the interior of the Brillouin zone, in terms of point groups. Explicitly, it is a subgroup of the direct product C₄ × D₄. We present also the appropriate irreducible representations of the group
    corecore