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Abstract

A special Heisenberg model is considered for which the exchange integral takes on the same
value J not only for geometrically equivalent neighbours, but also for such j-neighbours which
constitute an orbit of a “hidden” symmetry group of scaling transformations. The dispersion law
for magnons for this model constitutes a reproduction of some rules of arithmetic number theory.
The extra symmetry is illustrated by a chain of 12 spins, which may be shown to be equivalent
to a toroidal 4 × 3-periodic crystal. c© 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been established that the model of a �nite linear Heisenberg magnet, consisting
of N spins s, exhibits a scaling symmetry of its kinematical properties [1–3]. Such
a symmetry, derived within the recipe of Weyl [4], manifests itself as a fact that
the distribution �:B→Z of quantum states of the magnet over the (�nite) Brillouin
zone B remains constant on each orbit of action of the hidden symmetry group AutCN

of the linear chain, with the “obvious” symmetry given by the translation group of
the crystal, i.e. the cyclic group CN . In the present paper we examine some simplest
consequences of imposing the scaling transformations as dynamical symmetries of the
Heisenberg model. Our principal assumption is that the exchange integral – the main
dynamical parameter of the Heisenberg model – takes on the same value J not only for
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geometrically equivalent neighbours, but also for all such j-neighbours which constitute
an orbit of the group AutCN of scaling transformations. We are going to demonstrate
that within such a model the dispersion law for magnons becomes a tool for a nice
reproduction of some results of arithmetic number theory, in particular it provides a
natural interpretation of quantities like Euler or M�obius function [5] in the realm of
�nite size e�ects of the condensed matter theory.

The model considered here mediates between the usual Heisenberg magnet with
interactions of nearest neighbours only, and the spherical model in which all neighbours
interact with the same exchange integral (see, e.g. Ref. [6]). As we show here, this
mediation becomes transparent within a multidimensional crystallographic interpretation
of the translational symmetry group CN of a linear ring [7,8]. Moreover, experimental
achievements in construction of simple quantum interferometer devices (SQID), and
quantum dots, including magnetic ones [9] allow us to express a hope that our model
might not be so far from a technological realisation.

2. The Heisenberg magnetic ring with a dynamical scaling symmetry

Let Ñ = {j = 1; 2; : : : ; N} be the set of nodes of the magnetic linear ring. We assume
it to be a regular orbit of action of the cyclic group CN – the translation symmetry
group of the magnet. Let s be the spin of each node, and s̃ = {m = s; s − 1; : : : ;−s}
– the set of all eigenvalues of the z-component of the spin operator s. Then the space
of all quantum states of the magnet is

L⊗N = lcC s̃
Ñ ; (1)

where

s̃ Ñ = {f : Ñ→s̃} (2)

is the set of all magnetic con�gurations, and lcC stands for the linear closure (of the set
s̃ Ñ ) over the �eld C of complex numbers. Thus, the set s̃ Ñ serves as an orthonormal
basis in the N th tensor power L⊗N of the single-node space L = lcC s̃. A magnetic
con�guration is a mapping f∈ s̃ Ñ , and can be presented more explicitly as the ket
|m1; : : : ; mN 〉, where mj ∈ s̃; j∈ Ñ .

The action P : CN × L⊗N → L⊗N of the cyclic group CN in the space L⊗N of all
quantum states of the magnet is imposed by the formula

P(j) |m1; : : : ; mN 〉 = |m(1−j)mod N : : : ; m(N−j)mod N 〉 ; j∈CN ; |m1; : : : ; mN 〉 ∈ s̃ Ñ :

(3)

It can be decomposed into irreducible representations (irreps) �k of the group
CN (�k(j) = exp (2�ikj=N )) according to the formula

P ∼=
∑
k ∈ B

⊕�(k)�k ; (4)
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where

B = {k = 0;±1;±2; : : : ;
{±(N=2 − 1); N=2 for N even
±(N − 1)=2 for N odd

}
(5)

is the (�nite) Brillouin zone of the one-dimensional periodic crystal Ñ . Decomposition
(4) de�nes the mapping �:B→Z of the Brillouin zone into the ring Z of integers,
given by the multiplicities �(k) of �k in P, and referred to as the distribution of
quantum states of the magnet over the Brillouin zone [10,11].

The symmetry of the distribution � has been thoroughly discussed [1–3,10,11] in
terms of the general recipe of Weyl [4]. According to this recipe, the “obvious” trans-
lational symmetry of the model implies that some essential features of this model are
subjected to the “hidden” symmetry, given by the group

Aut CN =
{
�r =

(
j

r j mod N

)
|r ∈ Ñ ; gcd(r; N ) = 1

}
; (6)

with gcd denoting the greatest common divisor. Operations �r of this group, i.e. au-
tomorphisms of the translation group CN , are referred to as scaling transformations of
the crystal Ñ (by the factor r). Indeed, this group accounts for a kinematical sym-
metry of the Heisenberg model, i.e. the symmetry of the distribution � of quantum
states over quasimomenta. It has been shown that the mapping �, which is in general
inhomogeneous, is exactly constant on each generalized star

B� = {k ∈B | gcd(k; N ) = �}⊂B; �∈K(N ) ; (7)

i.e. on each orbit of the hidden symmetry group AutCN on the Brillouin zone B.
Generalized strata are classi�ed by elements � of the set

K(N ) = {�∈ Ñ | gcd(�; N ) = �}⊂ Ñ (8)

of all divisors of N . This set, together with the relation 6, de�ned by

�16�2 ⇔ gcd(�1; �2) = �1; �1; �2 ∈K(N ) ; (9)

forms a lattice, i.e. a partially ordered set with unique maximal and minimal element
� = N and 1, respectively.

The Heisenberg – Dirac translationally invariant exchange Hamiltonian of the magnet
is

Ĥ =
∑
j∈ Ñ

∑
�∈ Ñ

J�sj · s( j+�)mod N ; (10)

where sj is the spin operator of the jth node, and J� is the exchange parameter between
�-neighbours, �∈ Ñ . In the following, we put J� = J−� mod N ; JN = 0. The translational
symmetry of the model implies that J� does not depend upon j. There is a variety
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of possible models, compatible with the translational symmetry CN . In particular, by
putting

J geom
�

{
J for � = ±l6N=2 ;
0 otherwise ;

(11)

we obtain the model in which only lth neighbours are interacting. The case l = 1
(nearest-neighbour interactions) is of most frequent use. Clearly, in the model given
by Eq. (11), the set {�∈ Ñ |J� 6=} constitutes an orbit of the group

C1i = {�1; �N−1} / Aut CN ; (N¿2) ; (12)

corresponding to one-dimensional “point” group of geometric symmetry of the ring.
Another extreme case is provided by the spherical model, where

J sph
� = J; �∈ Ñ\{N} : (13)

This model is invariant under the whole group AutCN of scalings.
Clearly, an arbitrary distribution of values of the exchange parameter J�; �∈ Ñ , pre-

serves the obvious symmetry of the recipe of Weyl, but, in general, breaks the hidden
symmetry AutCN . Now, we propose the most general form of the Heisenberg Hamil-
tonian, which is invariant under both groups, CN and AutCN . For such a Hamiltonian,
scaling transformations �r ∈Aut CN are symmetries of not only kinematics, but also of
dynamics of the Heisenberg magnet.

Let

Ñ =
⋃

�∈K(N )

Ñ (�) (14)

be a (disjoint) decomposition of the set Ñ of nodes of the magnet into subsets

Ñ (�) =
{
�
N
�

∣∣∣∣ gcd(�; �) = 1
}
⊂ Ñ ; �∈K(N ) ; (15)

so that

�̃(1) = {�∈ �̃ | gcd(�; �) = 1}⊂ �̃ (16)

is the set of all positive integers smaller than � and mutually prime with �. Clearly,
the sets Ñ (�); �∈K(N ), are orbits of the group AutCN acting on the crystal Ñ . Then

Ĥ =
∑

�∈K(N )

J sc
�

∑
�∈ Ñ (�)

∑
j∈ Ñ

sj · s( j+�) mod N (17)

is the most general form of the scaling-invariant Heisenberg Hamiltonian for the ring
Ñ . Any one-parameter version of the scaling-invariant Hamiltonian is speci�ed by

J (�)
� =

{
J for �∈ Ñ (�);
0 otherwise ;

(18)

i.e. by the choice of a single subset Ñ (�) in the decomposition (14).
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3. The dispersion law for magnons

The ground state of the Hamiltonian (17) with the exchange parameters (18) is fer-
romagnetic for J ¡ 0. Magnons are those excitations from the ferromagnetic saturation
con�guration

|vac〉 = |s; : : : ; s〉 (19)

which correspond to all states with a single spin deviation.
Let

|j〉 = |s; : : : ; s− 1; : : : ; s〉 ; j∈ Ñ (20)

be the con�guration in which the deviation is localised at the node j∈ Ñ. All states of
the form (20) constitute a regular orbit of the group CN acting on the set ñ Ñ, and thus
span an invariant subspace L⊗N

(1) of the space L⊗N. Clearly, this space is also invariant
with respect to the Hamiltonian (17), and each eigenstate

|k〉 = N−1=2
∑
j∈Ñ

e2�ikj=N |j〉 ; k ∈B ; (21)

describes the magnon with the quasimomentum k. One can readily obtain that

Ĥ |k〉 = E(k) |k〉 ; k ∈B ; (22)

with the eigenvalue

E(k) =
∑

�∈ Ñ\{N}
J�s(Ns− 2 + e−2�ik�=N + e2�ik�=N ) : (23)

We use the formula (cf., e.g. Ref. [10])

wN (k; �) =:
∑

�∈ Ñ (�)

e2�ik�=N =
’(�)
’(�′)

�(�′) ; (24)

where ’ and � is the Euler and M�obius function of the number theory, speci�ed by
the formulas

’(N ) =
{

1 for N = 1 ;
N

∏
p∈�(N )(p− 1)=p

(25)

and

�(N ) =


1 for N = 1 ;

(−1)|�(N )| for �p = 1 ; p∈ �(N ) ;

0 otherwise ;

(26)



482 W.J. Caspers et al. / Physica A 252 (1998) 477–487

with

N =
∏

p∈�(N )

p�p(N ) (27)

being the canonical decomposition of N into primes p; �(N )⊂K(N ) denoting the socle
of N, i.e. the set of all primes p∈K(N ), and

�′ =
�

gcd(k; �)
: (28)

Eq. (24) is a trigonometric result emerging from the group endomorphism  k : CN →
CN , given by

 k(�) = k�mod N; � ∈ Ñ : (29)

The set Ñ (�), i.e. the orbit of AutCN on CN , is mapped under this endomorphism
onto the set Ñ (�′) = Im k Ñ

(�), with the reduced divisor �′ given by Eq. (28). The
Euler functions ’(�) and ’(�′) give the number of elements in the set Ñ (�) and
Ñ (�′), respectively, whereas the M�obius function �(�′) accounts for the summation
over appropriate phase factors in Eq. (24).

Eq. (24) yields the following general form for energies of magnon states for an
arbitrary scaling-invariant Heisenberg Hamiltonian:

E(k) =
∑

�∈K(N )

J (�)s’(�)
[
Ns− 2 + 2

�(�′)
’(�′)

]
; k ∈B : (30)

The dispersion law for scaling-invariant magnons is thus expressed in terms of quotients
of Euler functions, modulated by M�obius functions, de�ned on the lattice K(N ) of
divisors of N .

For a one-parameter version (18) of the scaling-invariant Heisenberg Hamiltonian,
energies of magnon states vary around the value Js(Ns − 2)’(�), which corresponds
to vanishing of the M�obius function �(�′). The sign of this variation is determined by
the reduced divisor �′, and its amplitude – by the quotient 1=’(�′).

4. Multidimensional realization of the linear ring

A regular orbit of the cyclic group CN can be realised geometrically as a multi-
dimensional crystal, along the canonical decomposition (27) of N into prime factors
[7,8]. Let

Np = p�p(N ); p∈ �(N ) ; (31)

be the Sylow factor of N , corresponding to the prime divisor p∈ �(N )⊂K(N ), so
that CN can be factorised into Sylow subgroups

CN
∼=

∏
p∈ �(N )

×CNp =: A : (32)
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Accordingly, we have

Ñ ∼=
∏

p∈�(N )

×Ñp ; (33)

so that the set Ñ of nodes of the linear chain is presented as a |�(N )|-dimensional
periodic crystal, with cartesian axes labelled by primes p∈ �(N ), and Born–K�arm�an
periods Np along the axis p. The multidimensional counterpart of the label j ∈ Ñ of
the linear ring can be written in a “vector” form

j =
∑

p∈ �(N )

jpep ; (34)

where jp ∈ Ñp, and ep is a “unit vector” along p. When adding such vectors, say j1 +j2,
one has to bear in mind that it should be performed componentwise, modulo Np for
the component p ∈ �(N ).

The hidden symmetry group AutA, i.e. the group of scalings, consists of elements

r =
∑

p∈�(N )

rpep; gcd(rp; Np) = 1 (35)

and the action of r on A is speci�ed by

�r =
(
j
rj

)
; j∈A ; (36)

where

rj =
∑

p∈�(N )

(rpjp mod Np)ep : (37)

Within this multidimensional realization of the cyclic CN , some non-trivial scaling
symmetries acquire a simple geometric meaning. We de�ne

ip = 1− 2ep; p∈ �(N ) ; (38)

where 1∈AutA is a unit scaling. It follows from Eq. (35) that

ipep′ =
{
ep′ for p′ 6= p ;

−ep for p′ = p ;
(39)

so that ip ∈Aut A is a one-dimensional re
ection of the multidimensional toroidal crys-
tal. All these re
ections generate a group

E =

{∏
p∈ �

ip

∣∣∣∣ �⊂ �(N )

}
⊂Aut A (40)

with elements labelled by subsets � of the socle �(N ). E is the group of all geometric
symmetries of the toroidal crystal, and its order is

|E| =
{

2n−1 if 2∈ �(N ) and N2 = 2 ;
2n otherwise ;

(41)

with n = |�(N )| being the dimension of the crystal.
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Clearly, all dynamical scaling symmetries for i∈E acquire a transparent geometrical
meaning. This element, written in the form

i =
∏
p∈ �

ip (42)

for a subset � of the socle �(N ), corresponds to the inversion of all vectors j in
the n′ = |�| – dimensional subspace of the toroidal crystal, with the vectors in the
complement subspace corresponding to the set �(N )\� left unchanged.

If we wish to compare geometric symmetries of the toroidal crystal with appropriate
scalings of the linear ring, we need to �x the mapping � :A → CN , which should
be consistent with the obvious symmetry of the recipe of Weyl, i.e. it should be an
isomorphism of groups. The most general form of such a mapping is

�(j) =
∑

p∈�(N )

rpjp �Np mod N ; (43)

where rp; p∈ �(N ), de�ne an automorphism r ∈ Aut A, and

�Np = N=Np =
∏

p′∈�(N )\{p}
Np′ (44)

is the divisor complementary to Np in the lattice K(N ).
We observe that the decomposition (14) of the linear ring Ñ into orbits Ñ (�) of

the hidden symmetry group AutCN remains independent of the choice of the mapping
� given by Eq. (42), so that the corresponding scaling symmetry of the Hamiltonian
(17) is preserved in the toroidal crystal too. Moreover, in this new realisation all
scalings i∈E⊂ Aut A acquire a geometric meaning of interactions between neighbours
situated at the main diagonal in n′ = |�| – dimensional subsocle consisting of all these
p∈ �⊂ �(N ) which undergo the inversion under i∈E.

5. An example for the clock-dial plate

We demonstrate the dynamical symmetry for the case N = 12, referred to as the
clock dial plate. In this case we have

Aut C12 = {1; 5; 7; 11} ; (45)

and Eq. (14) reads

1̃2 = {1; 5; 7; 11} ∪ {2; 10} ∪ {3; 9} ∪ {4; 8} ∪ {6} ∪ {12} ; (46)

where the �rst element of each orbit Ñ (�) is the divisor �∈K(12). The lattice K(12)
is given in Fig. 1, and the socle is

�(12) = {2; 3}⊂K(12) : (47)
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Fig. 1. The lattice K(12).

Fig. 2. Scaling-invariant exchange interactions in the clock dial plate (interactions of the node
j = 12 = 0 mod 12 with all the Ñ (�)-neighbours for N = 12; � = 1, are indicated).

The simplest scaling-invariant Hamiltonian, corresponding to � = 12 in Eq. (17), is
de�ned by the exchange parameter J , the same for �rst (� = ±1) and �fths (� = ±5)
neighbours, as shown in Fig. 2. The corresponding dispersion law for magnons (Eq.
(29)) is presented in Fig. 3.

The canonical decomposition into primes,

12 = 22 · 3 ; (48)

yields a two-dimensional toroidal 4× 3-periodic crystal, shown in Fig. 4. We use here
the isomorphism � : C4 × C3 → C12, de�ned by the automorphism

r = 3e2 + e3 ; (49)

which corresponds to the canonical isomorphism of both obvious and hidden symmetry
groups of the recipe of Weyl. In this two-dimensional realisation of the clock dial plate,
the dynamical symmetry of the Heisenberg Hamiltonian under the scalings given by
Eq. (44), corresponds to next-nearest-neighbour interactions, i.e. these along the diag-
onals e2 ± e3 of the toroidal crystal.
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Fig. 3. Dispersion law for scaling-invariant magnons on the clock dial plate. J denotes the exchange integral
for � = 12. The dotted line corresponds to vanishing of the M�obius function. Values k = 0 and 6 correspond
respectively to the centre and the boundary of the Brillouin zone.

Fig. 4. The two-dimensional realisation of the clock-dial plate as a periodic toroidal crystal. The periodic unit
is encircled by the 4×3-rectangle. The cartesian coordinates ( j2; j3) of a node of the crystal de�ne the vector
j = j2e2+j3e3, with j2 ∈ 4̃ and j3 ∈ 3̃, and versors e2 and e3 shown in the �gure. The point at the intersection
( j2; j3) is the corresponding value from the clock-dial plate, given by j = �( j) = (9j2 + 4j3) mod 12j∈ 1̃2,
and the associated group automorphism r∈Aut A is given by r = 3e2 + e3 (cf. Eqs. 42 and 43). Scal-
ing-invariant interactions de�ned by Fig. 2 correspond here to interactions of all nearest neighbours along
both main diagonals of the coordinate system of Fig. 4, e.g. the node 1 interacts with 8, 2, 6 and 12, the
node 12 – with 7, 1, 5 and 11, etc.

6. Final remarks and conclusions

We have proposed here a scaling-invariant version of the one-dimensional Heisenberg
model of a magnet, with periodic boundary conditions. The scaling invariance of the
kinematics of such a model has been already described as an essential feature of each
model, which is independent upon the values of exchange integrals. Here we imposed
this invariance as a dynamical symmetry, by requiring the exchange integrals to be
constant on each orbit of the group AutCN of scalings, acting on the linear chain Ñ .
We have shown that such a model implies a kind of “arithmetic magnons”, with the
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dispersion law reproducing some values of Euler and M�obius functions of the number
theory, related to the lattice K(N ) of all divisors of the number N of nodes of the
crystal. In the multidimensional realisation some scalings acquire a geometric meaning.
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