47 research outputs found

    Optical properties of diamond-like carbon films subjected to ultraviolet irradiation

    No full text
    Influence of UV irradiation on optical properties of the nitrogen doped diamond-like carbon (DLC) films was studied. Transparency spectra of the initial, UV irradiated and concentrated UV irradiated films were measured. Dependences of the optical bandgap on the nitrogen content were obtained from these spectra. Raman measurements revealed a decrease in the graphitic cluster size by two times after UV irradiation. It was shown that concentrated UV irradiation leads to smaller changes in comparison with nonconcentrated UV. Physical mechanism of air oxygen embedding into the DLC structure under UV irradiation is proposed to explain the changes in the properties of the films

    Geometry of q-Hypergeometric Functions as a Bridge between Yangians and Quantum Affine Algebras

    Get PDF
    The rational quantized Knizhnik-Zamolodchikov equation (qKZ equation) associated with the Lie algebra sl2sl_2 is a system of linear difference equations with values in a tensor product of sl2sl_2 Verma modules. We solve the equation in terms of multidimensional qq-hypergeometric functions and define a natural isomorphism between the space of solutions and the tensor product of the corresponding quantum group Uq(sl2)U_q(sl_2) Verma modules, where the parameter qq is related to the step pp of the qKZ equation via q=epii/pq=e^{pi i/p}. We construct asymptotic solutions associated with suitable asymptotic zones and compute the transition functions between the asymptotic solutions in terms of the trigonometric RR-matrices. This description of the transition functions gives a new connection between representation theories of Yangians and quantum loop algebras and is analogous to the Kohno-Drinfeld theorem on the monodromy group of the differential Knizhnik-Zamolodchikov equation. In order to establish these results we construct a discrete Gauss-Manin connection, in particular, a suitable discrete local system, discrete homology and cohomology groups with coefficients in this local system, and identify an associated difference equation with the qKZ equation.Comment: 66 pages, amstex.tex (ver. 2.1) and amssym.tex are required; misprints are correcte

    On the 3-particle scattering continuum in quasi one dimensional integer spin Heisenberg magnets

    Full text link
    We analyse the three-particle scattering continuum in quasi one dimensional integer spin Heisenberg antiferromagnets within a low-energy effective field theory framework. We exactly determine the zero temperature dynamical structure factor in the O(3) nonlinear sigma model and in Tsvelik's Majorana fermion theory. We study the effects of interchain coupling in a Random Phase Approximation. We discuss the application of our results to recent neutron-scattering experiments on the Haldane-gap material CsNiCl3{\rm CsNiCl_3}.Comment: 8 pages of revtex, 5 figures, small changes, to appear in PR

    Representation theory of finite W algebras

    Full text link
    In this paper we study the finitely generated algebras underlying WW algebras. These so called 'finite WW algebras' are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings of sl2sl_2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finite WW algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finite WW symmetry. In the second part we BRST quantize the finite WW algebras. The BRST cohomology is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finite WW algebras in one stroke. Explicit results for sl3sl_3 and sl4sl_4 are given. In the last part of the paper we study the representation theory of finite WW algebras. It is shown, using a quantum version of the generalized Miura transformation, that the representations of finite WW algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finite WW algebras.Comment: 62 pages, THU-92/32, ITFA-28-9

    Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamic Bethe Ansatz

    Full text link
    We construct the quantum versions of the monodromy matrices of KdV theory. The traces of these quantum monodromy matrices, which will be called as ``T{\bf T}-operators'', act in highest weight Virasoro modules. The T{\bf T}-operators depend on the spectral parameter λ\lambda and their expansion around λ=\lambda = \infty generates an infinite set of commuting Hamiltonians of the quantum KdV system. The T{\bf T}-operators can be viewed as the continuous field theory versions of the commuting transfer-matrices of integrable lattice theory. In particular, we show that for the values c=13(2n+1)22n+3,n=1,2,3,...c=1-3{{(2n+1)^2}\over {2n+3}} , n=1,2,3,... of the Virasoro central charge the eigenvalues of the T{\bf T}-operators satisfy a closed system of functional equations sufficient for determining the spectrum. For the ground-state eigenvalue these functional equations are equivalent to those of massless Thermodynamic Bethe Ansatz for the minimal conformal field theory M2,2n+3{\cal M}_{2,2n+3}; in general they provide a way to generalize the technique of Thermodynamic Bethe Ansatz to the excited states. We discuss a generalization of our approach to the cases of massive field theories obtained by perturbing these Conformal Field Theories with the operator Φ1,3\Phi_{1,3}. The relation of these T{\bf T}-operators to the boundary states is also briefly described.Comment: 24 page

    Generalized Drinfeld-Sokolov Reductions and KdV Type Hierarchies

    Get PDF
    Generalized Drinfeld-Sokolov (DS) hierarchies are constructed through local reductions of Hamiltonian flows generated by monodromy invariants on the dual of a loop algebra. Following earlier work of De Groot et al, reductions based upon graded regular elements of arbitrary Heisenberg subalgebras are considered. We show that, in the case of the nontwisted loop algebra (gln)\ell(gl_n), graded regular elements exist only in those Heisenberg subalgebras which correspond either to the partitions of nn into the sum of equal numbers n=prn=pr or to equal numbers plus one n=pr+1n=pr+1. We prove that the reduction belonging to the grade 11 regular elements in the case n=prn=pr yields the p×pp\times p matrix version of the Gelfand-Dickey rr-KdV hierarchy, generalizing the scalar case p=1p=1 considered by DS. The methods of DS are utilized throughout the analysis, but formulating the reduction entirely within the Hamiltonian framework provided by the classical r-matrix approach leads to some simplifications even for p=1p=1.Comment: 43 page

    The phase diagram of the extended anisotropic ferromagnetic-antiferromagnetic Heisenberg chain

    Full text link
    By using Density Matrix Renormalization Group (DMRG) technique we study the phase diagram of 1D extended anisotropic Heisenberg model with ferromagnetic nearest-neighbor and antiferromagnetic next-nearest-neighbor interactions. We analyze the static correlation functions for the spin operators both in- and out-of-plane and classify the zero-temperature phases by the range of their correlations. On clusters of 64,100,200,30064,100,200,300 sites with open boundary conditions we isolate the boundary effects and make finite-size scaling of our results. Apart from the ferromagnetic phase, we identify two gapless spin-fluid phases and two ones with massive excitations. Based on our phase diagram and on estimates for the coupling constants known from literature, we classify the ground states of several edge-sharing materials.Comment: 12 pages, 13 figure

    Elastic scattering and breakup reactions with light proton- and neutron-rich exotic nuclei

    No full text
    A microscopic analysis of the optical potentials (OPs) and cross sections of elastic scattering of 8B on 12C, 58Ni, and 208Pb targets at energies 20 < E < 170 MeV and 12,14Be on 12C at 56 MeV/nucleon is carried out. The real part of the OP is calculated by a folding procedure and the imaginary part is obtained on the base of the high-energy approximation (HEA). The density distributions of 8B evaluated within the variational Monte Carlo (VMC) model and the three-cluster model (3CM) are used to construct the potentials. The 14Be densities obtained in the framework of the the generator coordinate method (GCM) are used to calculate the optical potentials, while for the same purpose both the VMC model and GCM densities of 12Be are used. In the hybrid model developed and explored in our previous works, the only free parameters are the depths of the real and imaginary parts of OP obtained by fitting the experimental data. The use of HEA to estimate the imaginary OP at energies just above the Coulomb barrier is discussed. In addition, cluster model, in which 8B consists of a p-halo and the 7Be core, is applied to calculate the breakup cross sections of 8B nucleus on 9Be, 12C, and 197Au targets, as well as momentum distributions of 7Be fragments. A good agreement of the theoretical results with the available experimental data is obtained. It is concluded that the reaction studies performed in this work may provide supplemental information on the internal spatial structure of the proton- and neutron-halo nuclei

    Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter

    No full text
    Abstract: The Arctic stratosphere winter season of 2020–2021 was characterized by a weakened stratospheric polar vortex as a result of a major sudden stratospheric warming (SSW) in early January. After the SSW, which persisted for about 3 weeks, and until the end of the winter season, the lower stratosphere temperature inside the stratospheric polar vortex remained higher than required for the formation of polar stratospheric clouds
    corecore