26 research outputs found

    Precision measurement of 65^{65}Zn electron-capture decays with the KDK coincidence setup

    Full text link
    65^{65}Zn is a common calibration source, moreover used as a radioactive tracer in medical and biological studies. In many cases, γ\gamma-spectroscopy is a preferred method of 65^{65}Zn standardization, which relies directly on the branching ratio of Jπ(65Zn)=5/2−→Jπ(65Cu)=5/2−J \pi (^{65}\text{Zn} ) = 5/2^- \rightarrow J \pi (^{65}\text{Cu}) = 5/2^- via electron capture (EC*). We measure the relative intensity of this branch to that proceeding directly to the ground state (EC0^0) using a novel coincidence technique, finding IEC0/IEC*=0.9684±0.0018I_{\text{EC}^0}/I_{\text{EC*}} = 0.9684 \pm 0.0018. Re-evaluating the decay scheme of 65^{65}Zn by adopting the commonly evaluated branching ratio of Iβ+=1.4271(7)%I_{\beta^+}= 1.4271(7)\% we obtain IEC*=(50.08±0.06)%I_{\text{EC*}} = (50.08 \pm 0.06)\%, and I_\text{EC^0} = (48.50 \pm 0.06) \%. The associated 1115 keV gamma intensity agrees with the previously reported NNDC value, and is now accessible with a factor of ~2 increase in precision. Our re-evaluation removes reliance on the deduction of this gamma intensity from numerous measurements, some of which disagree and depend directly on total activity determination. The KDK experimental technique provides a new avenue for verification or updates to the decay scheme of 65^{65}Zn, and is applicable to other isotopes.Comment: Uses similar methodology to the 40K measurement by the KDK Collaboration (Stukel et al PRL 2023, arXiv:2211.10319; Hariasz et al PRC 2023, arXiv:2211.10343), as such there may be some similarity in figures and tex

    Evidence for ground-state electron capture of 40^{40}K

    Full text link
    Potassium-40 is a widespread isotope whose radioactivity impacts estimated geological ages spanning billions of years, nuclear structure theory, and subatomic rare-event searches - including those for dark matter and neutrinoless double-beta decay. The decays of this long-lived isotope must be precisely known for its use as a geochronometer, and to account for its presence in low-background experiments. There are several known decay modes for 40^{40}K, but a predicted electron-capture decay directly to the ground state of argon-40 has never been observed, while theoretical predictions span an order of magnitude. The KDK Collaboration reports on the first observation of this rare decay, obtained using a novel combination of a low-threshold X-ray detector surrounded by a tonne-scale, high-efficiency γ\gamma-ray tagger at Oak Ridge National Laboratory. A blinded analysis reveals a distinctly nonzero ratio of intensities of ground-state electron-captures (IEC0I_{\text{EC}^0}) over excited-state ones (IEC∗I_{\text{EC}^*}) of IEC0/IEC∗=0.0095±stat0.0022±sys0.0010I_{\text{EC}^0} / I_{\text{EC}^*}=0.0095\stackrel{\text{stat}}{\pm}0.0022\stackrel{\text{sys}}{\pm}0.0010 (68% CL), with the null hypothesis rejected at 4σ\sigma [Stukel et al., DOI:10.1103/PhysRevLett.131.052503]. This unambiguous signal yields a branching ratio of IEC0=0.098%±stat0.023%±sys0.010I_{\text{EC}^0}=0.098\%\stackrel{\text{stat}}{\pm}0.023\%\stackrel{\text{sys}}{\pm}0.010, roughly half of the commonly used prediction. This first observation of a third-forbidden unique electron capture improves understanding of low-energy backgrounds in dark-matter searches and has implications for nuclear-structure calculations. A shell-model based theoretical estimate for the 0νββ0\nu\beta\beta decay half-life of calcium-48 is increased by a factor of 7−2+37^{+3}_{-2}. Our nonzero measurement shifts geochronological ages by up to a percent; implications are illustrated for Earth and solar system chronologies.Comment: This is a companion submission to Stukel et al (KDK collaboration) "Rare 40^{40}K decay with implications for fundamental physics and geochronology" [arXiv:2211.10319; DOI: 10.1103/PhysRevLett.131.052503]. As such, both texts share some figures and portions of text. This version updates the text following its review and production proces

    A novel experimental system for the KDK measurement of the 40^{40}K decay scheme relevant for rare event searches

    Full text link
    Potassium-40 (40^{40}K) is a long-lived, naturally occurring radioactive isotope. The decay products are prominent backgrounds for many rare event searches, including those involving NaI-based scintillators. 40^{40}K also plays a role in geochronological dating techniques. The branching ratio of the electron capture directly to the ground state of argon-40 has never been measured, which can cause difficulty in interpreting certain results or can lead to lack of precision depending on the field and analysis technique. The KDK (Potassium (K) Decay (DK)) collaboration is measuring this decay. A composite method has a silicon drift detector with an enriched, thermally deposited 40^{40}K source inside the Modular Total Absorption Spectrometer. This setup has been characterized in terms of energy calibration, gamma tagging efficiency, live time and false negatives and positives. A complementary, homogeneous, method is also discussed; it employs a KSr2_2I5_5:Eu scintillator as source and detector.Comment: 20 pages, 24 figures, Submitted to NIM

    Progress in Diamond Detector Development

    Get PDF
    Detectors based on Chemical Vapor Deposition (CVD) diamond have been used successfully in Luminosity and Beam Condition Monitors (BCM) in the highest radiation areas of the LHC. Future experiments at CERN will accumulate an order of magnitude larger fluence. As a result, an enormous effort is underway to identify detector materials that can operate under fluences of 1 · 1016 n cm−2 and 1 · 1017 n cm−2. Diamond is one candidate due to its large displacement energy that enhances its radiation tolerance. Over the last 30 years the RD42 collaboration has constructed diamond detectors in CVD diamond with a planar geometry and with a 3D geometry to extend the material's radiation tolerance. The 3D cells in these detectors have a size of 50 µm×50 µm with columns of 2.6 µm in diameter and 100 µm×150 µm with columns of 4.6 µm in diameter. Here we present the latest beam test results from planar and 3D diamond pixel detectors

    A study of the radiation tolerance of cvd diamond to 70 mev protons, fast neutrons and 200 mev pions

    Get PDF
    We measured the radiation tolerance of commercially available diamonds grown by the Chemical Vapor Deposition process by measuring the charge created by a 120 GeV hadron beam in a 50 μm pitch strip detector fabricated on each diamond sample before and after irradiation. We irradiated one group of samples with 70 MeV protons, a second group of samples with fast reactor neutrons (defined as energy greater than 0.1 MeV), and a third group of samples with 200 MeV pions, in steps, to (8.8±0.9) × 1015^{15} protons/cm2^{2}, (1.43±0.14) × 1016^{16} neutrons/cm2^{2}, and (6.5±1.4) × 1014 pions/cm2^{2}, respectively. By observing the charge induced due to the separation of electron–hole pairs created by the passage of the hadron beam through each sample, on an event-by-event basis, as a function of irradiation fluence, we conclude all datasets can be described by a first-order damage equation and independently calculate the damage constant for 70 MeV protons, fast reactor neutrons, and 200 MeV pions. We find the damage constant for diamond irradiated with 70 MeV protons to be 1.62±0.07(stat)±0.16(syst)× 10−18 cm2^{2}/(pμm), the damage constant for diamond irradiated with fast reactor neutrons to be 2.65±0.13(stat)±0.18(syst)× 10−18 cm2^{2}/(nμm), and the damage constant for diamond irradiated with 200 MeV pions to be 2.0±0.2(stat)±0.5(syst)× 10−18 cm2^{2}/(πμm). The damage constants from this measurement were analyzed together with our previously published 24 GeV proton irradiation and 800 MeV proton irradiation damage constant data to derive the first comprehensive set of relative damage constants for Chemical Vapor Deposition diamond. We find 70 MeV protons are 2.60 ± 0.29 times more damaging than 24 GeV protons, fast reactor neutrons are 4.3 ± 0.4 times more damaging than 24 GeV protons, and 200 MeV pions are 3.2 ± 0.8 more damaging than 24 GeV protons. We also observe the measured data can be described by a universal damage curve for all proton, neutron, and pion irradiations we performed of Chemical Vapor Deposition diamond. Finally, we confirm the spatial uniformity of the collected charge increases with fluence for polycrystalline Chemical Vapor Deposition diamond, and this effect can also be described by a universal curve

    Beam test results of 3D pixel detectors constructed with poly-crystalline CVD diamond

    Get PDF
    As a possible candidate for extremely radiation tolerant tracking devices we present a novel detector design - namely 3D detectors - based on poly-crystalline CVD diamond sensors with a pixel readout. The fabrication of recent 3D detectors as well their results in recent beam tests are presented. We measured the hit efficiency and signal response of two 3D diamond detectors with 50 × 50 μm cell sizes using pixel readout chip technologies currently used at CMS and ATLAS. In all runs, both devices attained efficiencies >98 % in a normal incident test beam of minimum ionising particles. The highest efficiency observed during the beam tests was 99.2 %

    Recent progress in CVD diamond detector R&D

    No full text
    We present an overview of the latest developments from RD42 in diamond detector R&D.; They include the radiation hardness coefficients for 800MeV and 24 GeV protons, the hit detectionefficiency for two 3D detector prototypes with two different readout chips and a novel method for investigating charge transport in single crystal diamonds
    corecore