960 research outputs found

    Finite size scaling in Villain's fully frustrated model and singular effects of plaquette disorder

    Full text link
    The ground state and low T behavior of two-dimensional spin systems with discrete binary couplings are subtle but can be analyzed using exact computations of finite volume partition functions. We first apply this approach to Villain's fully frustrated model, unveiling an unexpected finite size scaling law. Then we show that the introduction of even a small amount of disorder on the plaquettes dramatically changes the scaling laws associated with the T=0 critical point.Comment: Latex with 3 ps figures. Last versio

    Genome-wide association study of behavioural and psychiatric features in human prion disease.

    Get PDF
    Prion diseases are rare neurodegenerative conditions causing highly variable clinical syndromes, which often include prominent neuropsychiatric symptoms. We have recently carried out a clinical study of behavioural and psychiatric symptoms in a large prospective cohort of patients with prion disease in the United Kingdom, allowing us to operationalise specific behavioural/psychiatric phenotypes as traits in human prion disease. Here, we report exploratory genome-wide association analysis on 170 of these patients and 5200 UK controls, looking for single-nucleotide polymorphisms (SNPs) associated with three behavioural/psychiatric phenotypes in the context of prion disease. We also specifically examined a selection of candidate SNPs that have shown genome-wide association with psychiatric conditions in previously published studies, and the codon 129 polymorphism of the prion protein gene, which is known to modify various aspects of the phenotype of prion disease. No SNPs reached genome-wide significance, and there was no evidence of altered burden of known psychiatric risk alleles in relevant prion cases. SNPs showing suggestive evidence of association (P<10(-5)) included several lying near genes previously implicated in association studies of other psychiatric and neurodegenerative diseases. These include ANK3, SORL1 and a region of chromosome 6p containing several genes implicated in schizophrenia and bipolar disorder. We would encourage others to acquire phenotype data in independent cohorts of patients with prion disease as well as other neurodegenerative and neuropsychiatric conditions, to allow meta-analysis that may shed clearer light on the biological basis of these complex disease manifestations, and the diseases themselves

    Critical thermodynamics of the two-dimensional +/-J Ising spin glass

    Full text link
    We compute the exact partition function of 2d Ising spin glasses with binary couplings. In these systems, the ground state is highly degenerate and is separated from the first excited state by a gap of size 4J. Nevertheless, we find that the low temperature specific heat density scales as exp(-2J/T), corresponding to an ``effective'' gap of size 2J; in addition, an associated cross-over length scale grows as exp(J/T). We justify these scalings via the degeneracy of the low-lying excitations and by the way low energy domain walls proliferate in this model

    Strong universality and algebraic scaling in two-dimensional Ising spin glasses

    Full text link
    At zero temperature, two-dimensional Ising spin glasses are known to fall into several universality classes. Here we consider the scaling at low but non-zero temperature and provide numerical evidence that η0\eta \approx 0 and ν3.5\nu \approx 3.5 in all cases, suggesting a unique universality class. This algebraic (as opposed to exponential) scaling holds in particular for the ±J\pm J model, with or without dilutions and for the plaquette diluted model. Such a picture, associated with an exceptional behavior at T=0, is consistent with a real space renormalization group approach. We also explain how the scaling of the specific heat is compatible with the hyperscaling prediction

    Energy gap of the bimodal two-dimensional Ising spin glass

    Full text link
    An exact algorithm is used to compute the degeneracies of the excited states of the bimodal Ising spin glass in two dimensions. It is found that the specific heat at arbitrary low temperature is not a self-averaging quantity and has a distribution that is neither normal or lognormal. Nevertheless, it is possible to estimate the most likely value and this is found to scale as L^3 T^(-2) exp(-4J/kT), for a L*L lattice. Our analysis also explains, for the first time, why a correlation length \xi ~ exp(2J/kT) is consistent with an energy gap of 2J. Our method allows us to obtain results for up to 10^5 disorder realizations with L <= 64. Distributions of second and third excitations are also shown.Comment: 4 pages, 4 figure

    Pointwise consistency of the kriging predictor with known mean and covariance functions

    Full text link
    This paper deals with several issues related to the pointwise consistency of the kriging predictor when the mean and the covariance functions are known. These questions are of general importance in the context of computer experiments. The analysis is based on the properties of approximations in reproducing kernel Hilbert spaces. We fix an erroneous claim of Yakowitz and Szidarovszky (J. Multivariate Analysis, 1985) that the kriging predictor is pointwise consistent for all continuous sample paths under some assumptions.Comment: Submitted to mODa9 (the Model-Oriented Data Analysis and Optimum Design Conference), 14th-19th June 2010, Bertinoro, Ital

    Domain wall entropy of the bimodal two-dimensional Ising spin glass

    Full text link
    We report calculations of the domain wall entropy for the bimodal two-dimensional Ising spin glass in the critical ground state. The L * L system sizes are large with L up to 256. We find that it is possible to fit the variance of the domain wall entropy to a power function of L. However, the quality of the data distributions are unsatisfactory with large L > 96. Consequently, it is not possible to reliably determine the fractal dimension of the domain walls.Comment: 4 pages, 2 figures, submitted to PR

    Andreev reflection and order parameter symmetry in heavy-fermion superconductors: the case of CeCoIn5_5

    Full text link
    We review the current status of Andreev reflection spectroscopy on the heavy fermions, mostly focusing on the case of CeCoIn5_5, a heavy-fermion superconductor with a critical temperature of 2.3 K. This is a well-established technique to investigate superconducting order parameters via measurements of the differential conductance from nanoscale metallic junctions. Andreev reflection is clearly observed in CeCoIn5_5 as in other heavy-fermion superconductors. The measured Andreev signal is highly reduced to the order of maximum \sim 13% compared to the theoretically predicted value (100%). Analysis of the conductance spectra using the extended BTK model provides a qualitative measure for the superconducting order parameter symmetry, which is determined to be dx2y2d_{x^2-y^2}-wave in CeCoIn5_5. A phenomenological model is proposed employing a Fano interference effect between two conductance channels in order to explain both the conductance asymmetry and the reduced Andreev signal. This model appears plausible not only because it provides good fits to the data but also because it is highly likely that the electrical conduction occurs via two channels, one into the heavy electron liquid and the other into the conduction electron continuum. Further experimental and theoretical investigations will shed new light on the mechanism of how the coherent heavy-electron liquid emerges out of the Kondo lattice, a prototypical strongly correlated electron system. Unresolved issues and future directions are also discussed.Comment: Topical Review published in JPCM (see below), 28 pages, 9 figure

    CMB photons shedding light on dark matter

    Full text link
    The annihilation or decay of Dark Matter (DM) particles could affect the thermal history of the universe and leave an observable signature in Cosmic Microwave Background (CMB) anisotropies. We update constraints on the annihilation rate of DM particles in the smooth cosmological background, using WMAP7 and recent small-scale CMB data. With a systematic analysis based on the Press-Schechter formalism, we also show that DM annihilation in halos at small redshift may explain entirely the reionization patterns observed in the CMB, under reasonable assumptions concerning the concentration and formation redshift of halos. We find that a mixed reionization model based on DM annihilation in halos as well as star formation at a redshift z~6.5 could simultaneously account for CMB observations and satisfy constraints inferred from the Gunn-Peterson effect. However, these models tend to reheat the inter-galactic medium (IGM) well above observational bounds: by including a realistic prior on the IGM temperature at low redshift, we find stronger cosmological bounds on the annihilation cross-section than with the CMB alone.Comment: 35 pages, 14 figures; version accepted in JCAP after minor revision

    Large random correlations in individual mean field spin glass samples

    Full text link
    We argue that complex systems must possess long range correlations and illustrate this idea on the example of the mean field spin glass model. Defined on the complete graph, this model has no genuine concept of distance, but the long range character of correlations is translated into a broad distribution of the spin-spin correlation coefficients for almost all realizations of the random couplings. When we sample the whole phase space we find that this distribution is so broad indeed that at low temperatures it essentially becomes uniform, with all possible correlation values appearing with the same probability. The distribution of correlations inside a single phase space valley is also studied and found to be much narrower.Comment: Added a few references and a comment phras
    corecore