19 research outputs found

    Observations of nonlinear internal waves at a persistent coastal upwelling front

    Get PDF
    We collected high-resolution observations of nonlinear internal waves (NLIWs) at a persistent upwelling front in the shallow coastal environment (~20 m) of northern Monterey Bay, CA. The coastal upwelling front forms between recently upwelled waters and warmer stratified waters that are trapped in the bay (upwelling shadow). The front propagates up and down the coast in the along-shore direction as a buoyant plume front due to modulation by strong diurnal wind forcing. The evolution of the coastal upwelling front, and the subsequent modulation of background environmental conditions, is examined using both individual events and composite day averages. We demonstrate that regional-scale upwelling and local diurnal wind forcing are key components controlling local stratification and the formation of internal wave guides that allow for high-frequency internal wave activity. Finally, we discuss the ability of theoretical models to describe particularly large-amplitude internal waves that exist in the presence of a strong background shear and test a fully nonlinear model (i.e., the Dubreil–Jacotin–Long equation)

    Turbulence and Fossil Turbulence in Oceans and Lakes

    Full text link
    Turbulence is defined as an eddy-like state of fluid motion where the inertial-vortex forces of the eddies are larger than any of the other forces that tend to damp the eddies out. Energy cascades of irrotational flows from large scales to small are non-turbulent, even if they supply energy to turbulence. Turbulent flows are rotational and cascade from small scales to large, with feedback. Viscous forces limit the smallest turbulent eddy size to the Kolmogorov scale. In stratified fluids, buoyancy forces limit large vertical overturns to the Ozmidov scale and convert the largest turbulent eddies into a unique class of saturated, non-propagating, internal waves, termed fossil-vorticity-turbulence. These waves have the same energy but different properties and spectral forms than the original turbulence patch. The Gibson (1980, 1986) theory of fossil turbulence applies universal similarity theories of turbulence and turbulent mixing to the vertical evolution of an isolated patch of turbulence in a stratified fluid as its growth is constrained and fossilized by buoyancy forces. These theories apply to the dynamics of atmospheric, astrophysical and cosmological turbulence.Comment: 31 pages, 11 figures, 2 tables, see http://www-acs.ucsd.edu/~ir118 Accepted for publication by the Chinese Journal of Oceanology and Limnolog

    The role of routine esophagogastroduodenoscopy prior to laparoscopic cholecystectomy

    No full text

    Heiße Wanne - Kalte Folgen

    No full text

    Perkutane endoskopische Gastrostomie (PEG): "Pull"- versus "Push"-Technik

    No full text
    corecore