40 research outputs found

    Autumn Migration of Mississippi Flyway Mallards as Determined by Satellite Telemetry

    Get PDF
    We used satellite telemetry to study autumn migration timing, routes, stopover duration, and final destinations of mallards Anas platyrhynchos captured the previous spring in Arkansas from 2004 to 2007. Of those mallards that still had functioning transmitters on September 15 (n = 55), the average date when autumn migration began was October 23 (SE = 2.62 d; range = September 17–December 7). For those mallards that stopped for .1 d during migration, the average stopover length was 15.4 d (SE = 1.47 d). Ten mallards migrated nonstop to wintering sites. The eastern Dakotas were a heavily utilized stopover area. The total distance migrated per mallard averaged 1,407 km (SE = 89.55 km; range = 142–2,947 km). The average time spent on migration per individual between September 15 and December 15 was 27 d (SE = 2.88 d; range = 2–84 d). The state where most mallards were located on December 15 was Missouri (11) followed by Arkansas (8), while 5 mallards were still in Canada, and only 8 of 43 females and 0 of 10 males were present in Arkansas. The eastern Dakotas are a heavily utilized migration stopover for midcontinent mallards that may require more attention for migration habitat management. The reasons for so few mallards, especially male mallards, returning to Arkansas the following year deserves further research

    Spring Migration of Mallards from Arkansas as Determined by Satellite Telemetry

    Get PDF
    We used satellite telemetry to document spring migration phenology, routes, stopover regions, and nesting sites of mallards Anas platyrhynchos marked in Arkansas during the winters of 2004–2007. Of the 143 marked mallards that migrated from Arkansas, they did so, on average, by mid-March. Mallards flew over the Missouri Ozarks and 42% made an initial stopover in Missouri, where they used areas that had larger rivers (Mississippi River, Missouri River) embedded in an agricultural landscape. From this stopover region they either migrated directly to the Prairie Pothole Region (PPR) or they migrated north to Minnesota where they either moved next to the PPR or to the north and east of the PPR. For those mallards (83%) that stopped for .1 d before entering the PPR, the average length at each stop was 12 d (SE = 0.90 d, range = 2–54 d). Mallards made more stopovers, made shorter migration movements, and took longer to move to the PPR in wetter than drier years. Mallards arrived in the PPR earlier in 2006 (x¯ = 30 March, SE = 2.18 d) than in 2005 (x¯ = 7 April, SE = 2.30 d). Females nested across nine Bird Conservation Regions. Nesting occurred most frequently in South Dakota (n = 9). The average date when females nested was 19 April (SE = 2.44 d, range = 12 March–26 May). Because many mallards headed for the large river corridors in Missouri for their first stopover, this region is an important spring migration stopover of continental importance to mallards and might be considered a focal area for conservation

    Autumn Migration of Mississippi Flyway Mallards as Determined by Satellite Telemetry

    Get PDF
    We used satellite telemetry to study autumn migration timing, routes, stopover duration, and final destinations of mallards Anas platyrhynchos captured the previous spring in Arkansas from 2004 to 2007. Of those mallards that still had functioning transmitters on September 15 (n = 55), the average date when autumn migration began was October 23 (SE = 2.62 d; range = September 17–December 7). For those mallards that stopped for .1 d during migration, the average stopover length was 15.4 d (SE = 1.47 d). Ten mallards migrated nonstop to wintering sites. The eastern Dakotas were a heavily utilized stopover area. The total distance migrated per mallard averaged 1,407 km (SE = 89.55 km; range = 142–2,947 km). The average time spent on migration per individual between September 15 and December 15 was 27 d (SE = 2.88 d; range = 2–84 d). The state where most mallards were located on December 15 was Missouri (11) followed by Arkansas (8), while 5 mallards were still in Canada, and only 8 of 43 females and 0 of 10 males were present in Arkansas. The eastern Dakotas are a heavily utilized migration stopover for midcontinent mallards that may require more attention for migration habitat management. The reasons for so few mallards, especially male mallards, returning to Arkansas the following year deserves further research

    Body mass dynamics in wintering mallards (Anas platyrhynchos) in the Lower Mississippi Alluvial Valley

    No full text
    Body mass in overwintering waterfowl is an important fitness attribute as it affects winter survival, timing of spring migration, and subsequent reproductive success. Recent research in Europe and the western United States indicates body mass of mallards (Anas platyrhynchos) has increased from the late 1960s to early 2000s. The underlying mechanism is currently unknown; however, researchers hypothesize that increases are due to a more benign winter climate, increased food availability through natural and artificial flooding, introgression of wild mallard populations by game-farm mallards, or shifting of wintering distributions northward. Further investigation of factors related to winter mallard body mass increases and whether this phenomenon is occurring in other major flyways could increase understanding of intrinsic and extrinsic variables influencing waterfowl fitness. Here, we analyzed mallard body mass in the Lower Mississippi Alluvial Valley from 1979 to 2021 to determine sources of temporal variation. We measured hunter-harvested mallards from private hunting clubs, public hunting areas, and duck-plucking businesses. Mallard body mass increased by approximately 6% among all age-sex classes from 1979 to 2021. Average mallard mass increased by about 1.5% per decade but varied substantially among years. Within years, body mass was related to rainfall and river gage height; mallards had greater mass after periods of increased rainfall or river flooding, likely due to increased food availability. Mallard body mass had a marginal negative relationship with severe cold weather (derived using a weather severity index [WSI]). While body mass increased after wet periods within years, there was no relationship of mallard body mass with wet vs dry years, low vs high flood years, or hot vs cold years. Additionally, there was no detectable change in rainfall, river discharge, or temperature from 1979 to 2021. This indicates that rainfall and river height may influence mallard body mass within years, but may not be the primary factor responsible for mass increases over time. Our research confirms changes in mallard body mass are widespread and within-season precipitation and flooding account for much of the observed annual variation. Future research investigating specific mechanisms, such as introgression of game-farm mallard DNA and climate change, may clarify their contribution to mallard body mass change over time

    Quantitative and Qualitative Approaches to Identifying Migration Chronology in a Continental Migrant

    Get PDF
    <div><p>The degree to which extrinsic factors influence migration chronology in North American waterfowl has not been quantified, particularly for dabbling ducks. Previous studies have examined waterfowl migration using various methods, however, quantitative approaches to define avian migration chronology over broad spatio-temporal scales are limited, and the implications for using different approaches have not been assessed. We used movement data from 19 female adult mallards (<i>Anas platyrhynchos</i>) equipped with solar-powered global positioning system satellite transmitters to evaluate two individual level approaches for quantifying migration chronology. The first approach defined migration based on individual movements among geopolitical boundaries (state, provincial, international), whereas the second method modeled net displacement as a function of time using nonlinear models. Differences in migration chronologies identified by each of the approaches were examined with analysis of variance. The geopolitical method identified mean autumn migration midpoints at 15 November 2010 and 13 November 2011, whereas the net displacement method identified midpoints at 15 November 2010 and 14 November 2011. The mean midpoints for spring migration were 3 April 2011 and 20 March 2012 using the geopolitical method and 31 March 2011 and 22 March 2012 using the net displacement method. The duration, initiation date, midpoint, and termination date for both autumn and spring migration did not differ between the two individual level approaches. Although we did not detect differences in migration parameters between the different approaches, the net displacement metric offers broad potential to address questions in movement ecology for migrating species. Ultimately, an objective definition of migration chronology will allow researchers to obtain a comprehensive understanding of the extrinsic factors that drive migration at the individual and population levels. As a result, targeted conservation plans can be developed to support planning for habitat management and evaluation of long-term climate effects.</p></div

    Nonlinear mixed-effects migration models for ducks marked in Saskatchewan, Canada (top pane) and Arkansas, USA (lower pane).

    No full text
    <p>Predicted net displacement is displayed on the y-axis and time is on the x-axis. Black lines represent predicted ND values over time for the double-sigmoid model and gray lines represent predicted values for the single-sigmoid model. The population level midpoints (circles) and initiation and termination of migration are also displayed (triangles) for single- and double-sigmoid models.</p

    The midpoint and duration of migration in spring 2011 for 16 adult mallard hens.

    No full text
    <p>Upper panes illustrate the frequency distribution for the midpoint of spring migration according to (a) geopolitical method and (b) ND approach. Lower panes illustrate corresponding migration midpoints (circles) and extents (bars) for each of the methods. Vertical dashed lines represent the mean migration midpoint.</p

    The midpoint and duration of migration in autumn 2011 for seven adult mallard hens.

    No full text
    <p>Upper panes illustrate the frequency distribution for the midpoint of autumn migration according to (a) geopolitical method and (b) ND approach. Lower panes illustrate corresponding migration midpoints (circles) and extents (bars) for each of the methods. Vertical dashed lines represent the mean migration midpoint. See text for a description of sample size discrepancy between (a) and (b).</p

    The midpoint and duration of migration in autumn 2010 for eight adult mallard hens.

    No full text
    <p>Upper panes illustrate the frequency distribution for the midpoint of autumn migration according to (a) geopolitical method and (b) ND approach. Lower panes illustrate corresponding migration midpoints (circles) and extents (bars) for each of the methods. Vertical dashed lines represent the mean migration midpoint.</p

    Predicted net displacement (ND) as a function of time for two idealized individuals.

    No full text
    <p>The black line represents a duck that was initially marked on the nesting grounds in Saskatchewan, Canada in September 2010. The gray line represents an individual that was marked on the wintering grounds in Arkansas, USA in February 2011.</p
    corecore