149 research outputs found

    Inner and outer radial density functions in correlated two-electron systems

    Get PDF
    A method is presented for determining inner and outer one-electron radial density functions for two electron systems by partitioning the fully correlated two-electron radial density function. This is applied to the helium isolectronic series (Z=1 to 10 and 100) and the critical nuclear charge system, which has the minimum charge for which the atomic system has at least one bound state, to separate out the motions of the two electrons in both weakly and strongly correlated systems. It is found that the inner electron experiences an anti-shielding effect due to the perturbation by the other electron which increases with increasing Z. For the weakly bound systems the inner radial density distribution closely resembles that of a hydrogenic atom with the outer radial density distribution becoming very diffuse

    On the nature of quasiparticle interference in three dimensions

    Get PDF
    Quasiparticle Interference (QPI) imaging is a powerful tool for the study of the low energy electronic structure of quantum materials. However, the measurement of QPI by scanning tunneling microscopy (STM) is restricted to surfaces and is thus inherently constrained to two dimensions. This has proved immensely successful for the study of materials that exhibit a quasi-two-dimensional electronic structure, yet it raises questions about how to interpret QPI in materials that have a highly three dimensional electronic structure. In this paper we address this question and establish the methodology required to simulate and understand QPI arising from three dimensional systems as measured by STM. We calculate the continuum surface Green's function in the presence of a defect, which captures the role of the surface and the vacuum decay of the wave functions. We find that defects at different depths from the surface will produce unique sets of scattering vectors for three dimensional systems, which nevertheless can be related to the three-dimensional electronic structure of the bulk material. We illustrate the consequences that the three-dimensionality of the electronic structure has on the measured QPI for a simple cubic nearest-neighbour tight-binding model, and then demonstrate application to a real material using a realistic model for PbS. Our method unlocks the use of QPI imaging for the study of quantum materials with three dimensional electronic structures and introduces a framework to generically account for kzk_z-dispersions within QPI simulations

    Kz selective scattering within quasiparticle interference measurements of FeSe

    Get PDF
    Quasiparticle interference (QPI) provides a wealth of information relating to the electronic structure of a material. However, it is often assumed that this information is constrained to two-dimensional electronic states. We show that this is not necessarily the case. For FeSe, a system dominated by surface defects, we show that it is actually all electronic states with negligible group velocity in the z axis that are contained within the experimental data. By using a three-dimensional tight-binding model of FeSe, fit to photoemission measurements, we directly reproduce the experimental QPI scattering dispersion, within a T-matrix formalism, by including both kz=0 and kz=Ď€ electronic states. This result unifies both tunnelling based and photoemission based experiments on FeSe and highlights the importance of kz within surface sensitive measurements of QPI.Publisher PDFPeer reviewe

    FeSe and the missing electron pocket problem

    Get PDF
    LR acknowledges funding from the Royal Commission for the Exhibition 1851.The nature and origin of electronic nematicity remains a significant challenge in our understanding of the iron-based superconductors. This is particularly evident in the iron chalcogenide, FeSe, where it is currently unclear how the experimentally determined Fermi surface near the M point evolves from having two electron pockets in the tetragonal state, to exhibiting just a single electron pocket in the nematic state. This has posed a major theoretical challenge, which has become known as the missing electron pocket problem of FeSe, and is of central importance if we wish to uncover the secrets behind nematicity and superconductivity in the wider iron-based superconductors. Here, we review the recent experimental work uncovering this nematic Fermi surface of FeSe from both ARPES and STM measurements, as well as current theoretical attempts to explain this missing electron pocket of FeSe, with a particular focus on the emerging importance of incorporating the dxy orbital into theoretical descriptions of the nematic state. Furthermore, we will discuss the consequence this missing electron pocket has on the theoretical understanding of superconductivity in this system and present several remaining open questions and avenues for future research.Publisher PDFPeer reviewe

    Revealing the single electron pocket of FeSe in a single orthorhombic domain

    Get PDF
    Authors acknowledge Diamond Light Source for time on beamline I05-ARPES under Proposal SI23890. L.C.R. acknowledges funding from the Royal Commission for the Exhibition of 1851.We measure the electronic structure of FeSe from within individual orthorhombic domains. Enabled by an angle-resolved photoemission spectroscopy beamline with a highly focused beam spot (nano-ARPES), we identify clear stripelike orthorhombic domains in FeSe with a length scale of approximately 1-5 ÎĽm. Our photoemission measurements of the Fermi surface and band structure within individual domains reveal a single electron pocket at the Brillouin zone corner. This result provides clear evidence for a one-electron-pocket electronic structure of FeSe, observed without the application of uniaxial strain, and calls for further theoretical insight into this unusual Fermi surface topology. Our results also showcase the potential of nano-ARPES for the study of correlated materials with local domain structures.Publisher PDFPeer reviewe

    Compass-like manipulation of electronic nematicity in Sr3Ru2O7

    Get PDF
    Funding: M.N., C.A.M. and P.W. acknowledge funding from EPSRC through EP/R031924/1 and I.B. through the International Max Planck Research School for Chemistry and Physics of Quantum Materials. L.C.R. was supported through a fellowship from the Royal Commission for the Exhibition of 1851. C.A.M. further acknowledges funding from EPSRC through EP/L015110/1.Electronic nematicity has been found in a wide range of strongly correlated electron materials, resulting in the electronic states having a symmetry that is lower than that of the crystal that hosts them. One of the most astonishing examples is Sr3Ru2O7, in which a small in-plane component of a magnetic field induces significant resistivity anisotropy. The direction of this anisotropy follows the direction of the in-plane field. The microscopic origin of this field-induced nematicity has been a long-standing puzzle, with recent experiments suggesting a field-induced spin density wave driving the anisotropy. Here, we report spectroscopic imaging of a field-controlled anisotropy of the electronic structure at the surface of Sr3Ru2O7. We track the electronic structure as a function of the direction of the field, revealing a continuous change with field angle. This continuous evolution suggests a mechanism based on spin-orbit coupling resulting in compass-like control of the electronic bands. The anisotropy of the electronic structure persists to temperatures about an order of magnitude higher compared to the bulk, demonstrating novel routes to stabilize such phases over a wider temperature range.Publisher PDFPeer reviewe

    Engineering higher order Van Hove singularities in two dimensions: the example of the surface layer of Sr2_2RuO4_4

    Full text link
    The properties of correlated electron materials are often intricately linked to Van Hove singularities (VHs) in the vicinity of the Fermi energy. The class of these VHs is of great importance, with higher order ones -- with power-law divergence in the density of states -- leaving frequently distinct signatures in physical properties. We use a new theoretical method to detect and analyse higher order Van Hove singularities (HOVHs) in two-dimensional materials and apply it to the electronic structure of the surface layer of Sr2_2RuO4_4. We then constrain a low energy model of the VHs of the surface layer of Sr2_2RuO4_4 against angle-resolved photoemission spectroscopy and quasiparticle interference data to analyse the VHs near the Fermi level. We show how these VHs can be engineered into HOVHs.Comment: 8 pages including Supplemental Material, 5 figure

    Effect of nuclear motion on the critical nuclear charge for two-electron atoms

    Get PDF
    A variational method for calculating the critical nuclear charge, Zc, required for the binding of a nucleus to two electrons is reported. The method is very effective and performs well compared to the traditional variational principle for calculating energy. The critical nuclear charge, which corresponds to the minimum charge required for the atomic system to have at least one bound state, has been calculated for helium-like systems both with infinite and finite nuclear masses. The value of ZC=Z_C= 0.911 028 2(3) is in very good agreement with recent values in the literature for two-electron atoms with an infinite nuclear mass. When nuclear motion is considered, the value for Zc varies from 0.911 030 3(2) for that with a nuclear mass of Ne (the largest heliogenic system considered) to 0.921 802 4(4) for a system with the nuclear mass of a positron. In all cases the energy varies smoothly as Z→0Z \rightarrow 0. It is found that for the finite nuclear mass case, in agreement with previous work for the fixed nucleus mass system, the outer electron remains localised near the nucleus at Z = Zc. Additionally, the electron probability distribution is calculated to determine the behaviour of the electrons at low Z

    Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe

    Get PDF
    We report high resolution ARPES measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80%\% detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90~K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer aa axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along bb being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe

    Symmetry, spin and orbital character of a van-Hove singularity in proximity to a Lifshitz transition in Sr4_4Ru3_3O10_{10}

    Full text link
    The physics of strongly correlated electron materials is often governed by Van Hove singularities (VHss) in the vicinity of the Fermi energy. The divergence of the density of states generated by the VHss can promote electron-electron interactions and the emergence of new phases such as superconductivity, ferromagnetism, metamagnetism, nematicity and density wave orders. The shape and intensity of this divergence depends sensitively on the order and symmetry of the VHs, and hence a detailed understanding of the low-energy electronic structure is essential to understand the role of VHss in emergent phases. A family of materials with a large diversity of emergent phases that can be related to VHss close to the Fermi energy is the Ruddlesden-Popper series of the strontium ruthenates. Here we study the low-energy electronic structure at the surface of ferromagnetic Sr4_4Ru3_3O10_{10} by scanning tunneling microscopy and spectroscopy at millikelvin temperatures. We identify multiple VHss close to the Fermi energy and establish their spin character. Using quasiparticle interference we extract the orbital character and symmetry of the VHs closest to the Fermi energy, enabling us to identify a new mechanism for a field-induced Lifshitz transition facilitated by spin-orbit coupling as the origin of the metamagnetic behaviour in Sr4_4Ru3_3O10_{10}.Comment: 25 pages, 5 figures and supplementary materia
    • …
    corecore