5,273 research outputs found

    Diamagnetic repulsion of particles for multilaminar flow assays

    Get PDF
    © The Royal Society of Chemistry. We demonstrate diamagnetic repulsion forces for performing continuous multilaminar flow assays on particles based on their intrinsic properties and with a simple setup. The platform could be applied to sandwich assays on polystyrene particles, and to cell-based assays via their suspension in biologically benign magnetic media

    Correlation effects in quasi one dimensional electron wires

    Full text link
    We explore the role of electron correlation in quasi one dimensional quantum wires as the range of the interaction potential is changed and their thickness is varied by performing exact quantum Monte Carlo simulations at various electronic densities. In the case of unscreened interactions with a long range 1/x tail there is a crossover from a liquid to a quasi Wigner crystal state as the density decreases. When this interaction is screened, quasi long range order is prevented from forming, although a significant correlation with 4 k_F periodicity is still present at low densities. At even lower electron concentration, exchange is suppressed and the spin-dependent interactions become negligible, making the electrons behave like spinless fermions. We show that this behavior is shared by the long range and screened interactions by studying the spin and charge excitations of the system in both cases. Finally, we study the effect of electron correlations in the double quantum wire experiment [Steinberg et al., Phys. Rev. B 77, 113307 (2006)], by introducing an accurate model for the screening in the experiment and explicitly including the finite length of the system in our simulations. We find that decreasing the electron density drives the system from a liquid to a state with quite strong 4 k_F correlations. This crossover takes place around 20μm−120 \mu m^{-1}, the density where the electron localization occurs in the experiment. The charge and spin velocities are also in remarkable agreement with the experimental findings in the proximity of the crossover. We argue that correlation effects play an important role at the onset of the localization transition.Comment: minor improvements, 13 pages, 12 figure

    Hybridization gap versus hidden order gap in URu2_2Si2_2 as revealed by optical spectroscopy

    Full text link
    We present the in-plane optical reflectance measurement on single crystals of URu2_2As2_2. The study revealed a strong temperature-dependent spectral evolution. Above 50 K, the low frequency optical conductivity is rather flat without a clear Drude-like response, indicating a very short transport life time of the free carriers. Well below the coherence temperature, there appears an abrupt spectral weight suppression below 400 cm−1^{-1}, yielding evidence for the formation of a hybridization energy gap arising from the mixing of the conduction electron and narrow f-electron bands. A small part of the suppressed spectral weight was transferred to the low frequency side, leading to a narrow Drude component, while the majority of the suppressed spectral weight was transferred to the high frequency side centered near 4000 cm−1^{-1}. Below the hidden order temperature, another very prominent energy gap structure was observed, which leads to the removal of a large part of the Drude component and a sharp reduction of the carrier scattering rate. The study revealed that the hybridization gap and the hidden orger gap are distinctly different: they occur at different energy scales and exhibit completely different spectral characteristics.Comment: 5 page

    Optically-ambidextrous circularly-polarised reflection from the chiral cuticle of the scarab beetle Chrysina resplendens

    Get PDF
    This is the author accepted manuscript. The final version is available from Royal Society via the DOI in this record.The evolution of structural colour mechanisms in biological systems has given rise to many interesting optical effects in animals and plants. The instance of the scarab beetle Chrysina resplendens is particularly distinctive. Its exoskeleton has a bright, golden appearance and reflects both right-handed and left-handed circularly-polarized light concurrently. The chiral nanostructure responsible for these properties is a helicoid, in which birefringent dielectric planes are assembled with an incremental rotation. This study correlates details of the beetle’s circularly-polarized reflectance spectra directly with physical aspects of its structural morphology. Electron micrography is used to identify and measure the physical dimensions of the key constituent components. These include a chiral multilayer configuration comprising two chirped, lefthanded helicoids that are separated by a birefringent retarder. A scattering matrix technique is used to simulate the system’s optical behaviour in which the roles of each component of the morphological substructure are elucidated by calculation of the fields throughout its depth.This work was supported by AFOSR grant number FA9550-10-1- 0020

    Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure

    Get PDF
    Helicoidal architectures comprising various polysaccharides, such as chitin and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly polarized reflectance and optical scattering from the cuticle of the beetle Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type helicoidal morphology within the beetle's exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic stratified medium, the inextricable connection between the colour appearance of C. smaragdina and the periodicity of its helicoidal rotation is shown. A close agreement between the model and the measured reflectance spectra is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed diffraction grating-like surface structure, which affects the diffuse appearance of the beetle's reflected colour, and therefore potentially enhances crypsis among the dense foliage of its rainforest habitat

    Charge-monopole versus Gravitational Scattering at Planckian Energies

    Full text link
    The amplitude for the scattering of a point magnetic monopole and a point charge, at centre-of-mass energies much larger than the masses of the particles, and in the limit of low momentum transfer, is shown to be proportional to the (integer-valued) monopole strength, assuming the Dirac quantization condition for the monopole-charge system. It is demonstrated that, for small momentum transfer, charge-monopole electromagnetic effects remain comparable to those due to the gravitational interaction between the particles even at Planckian centre-of-mass energies.Comment: 9 pages, revtex, IMSc/93-4
    • …
    corecore