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Helicoidal architectures comprising various polysaccharides, such as chitin

and cellulose, have been reported in biological systems. In some cases,

these architectures exhibit stunning optical properties analogous to ordered

cholesteric liquid crystal phases. In this work, we characterize the circularly

polarized reflectance and optical scattering from the cuticle of the beetle

Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical
experiments, simulations and structural analysis. The selective reflection

of left-handed circularly polarized light is attributed to a Bouligand-type

helicoidal morphology within the beetle’s exocuticle. Using electron

microscopy to inform electromagnetic simulations of this anisotropic strati-

fied medium, the inextricable connection between the colour appearance

of C. smaragdina and the periodicity of its helicoidal rotation is shown.
A close agreement between the model and the measured reflectance spectra

is obtained. In addition, the elytral surface of C. smaragdina possesses a blazed
diffraction grating-like surface structure, which affects the diffuse appearance

of the beetle’s reflected colour, and therefore potentially enhances crypsis

among the dense foliage of its rainforest habitat.

1. Background
Benefiting from millions of years of evolution, complex growth and formation

mechanisms are used by numerous biological systems [1–5], often producing

remarkable optical effects [6–8]. Animals, plants and minerals showcase an

extraordinary diversity of biological photonic blueprints, illuminating the path

towards designing dynamic and adaptive photonic devices [9–11]. The order

Coleoptera is no exception [12], comprising approximately 400 000 species,

many of which display interesting optical properties including: narrowband

and broadband metallic colours [13,14], iridescent appearances [15–17], brilliant

whiteness [18,19] and distinct polarization signatures [20–22].

Polarized light is exploited extensively throughout nature. Particularly in

the animal kingdom, polarized light assists in predation [23,24], navigation

[25,26] and intraspecific communication [27,28] within a variety of ecosystems.

In contrast to linear polarization effects, which have been reported in numerous

biological systems [29–32], encountering circular polarization (CP) in nature is,

broadly speaking, far less common. The reflection of elliptically polarized light,

with a high degree of CP (ellipticity close to+1), is limited to a narrow range of
organisms, primarily arthropods, with the highest concentration of species exhi-

biting CP structural colours belonging to the coleopteran family Scarabaeidae.

Among scarabaeid beetles, Michelson is attributed with the earliest observation

of this phenomenon, described in his 1911 study ‘On metallic colouring in birds

and insects’ [33]. Early follow-up work showed that the optical properties of
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certain scarabaeids were analogous to those exhibited by

ordered cholesteric liquid crystal phases [34,35]. The advent

of electron microscopy facilitated significant advancements in

the understanding of the similarities in structural organization

shared by liquid crystals and biological materials. Conse-

quently, several investigations uncovered the precise physical

origin of the optical activity displayed by these systems shed

new light on the beetles’ photonic ultrastructure [21,36–39].

In beetle species reflecting CP light, an ultrastructure com-

prising clusters of parallel aligned chitin microfibrils woven

into a lamellar architecturewithin the exocuticlewas described.

Upon transitioning adjacent microfibril planes, the microfibrils

are rotated by small angles, for example, around 7–88 [40],
thereby creating a helicoidal morphology. The rotation of this

assembly through an angle of 1808 forms the eponymous
‘Bouligand structure’ [21,39] typically associated with the exo-

cuticle structures of many arthropods [41], including decapods

[42–44] and stomatopods [45,46] in addition to scarabaeid

beetle species. Beyond the animal kingdom, helicoidal mor-

phologies assembled from cellulose have been reported in

fruits [47,48] and other plants [49,50].

Overwhelmingly, investigations into the reflection of CP

light by scarabaeid beetles show that they exclusively reflect

left-handed CP (LCP) light in response to illumination at

normal incidence [22,51,52]. Presently, the ‘jewel scarab’ Chry-
sina resplendens, coincidently the subject of Michelson’s initial
observations [33], stands alone in exhibiting any deviation

from this behaviour [53,54]; a modification to the exocuticle

ultrastructure of C. resplendens enables this species to reflect
both LCP and right-handed CP (RCP) light simultaneously.

In this beetle, two spatially distinct left-handed helicoids are

separated by a non-helicoidal layer that performs the function

of a half-wave retarder; incident RCP light is reflected by the

lower of these helicoids. Clockwise-rotating helicoidal struc-

tures that directly reflect RCP light are extremely rare, but are

found alongside left-handed structures in the Pollia condensata
fruit [47].

Known for their vibrant colours, beetles belonging to the

Cetoniinae subfamily (flower chafers) present a plenitude of

candidate specimens for optical characterization. Of particular

relevance to this study, the reflection of CP light has been

reported in several cetoniine species [52]. In this paper, we

describe the CP colour appearance and light scattering proper-

ties of the flower chafer Chalcothea smaragdina through the use
of a range of microscopy techniques, visible light spectroscopy,

imaging scatterometry and theoretical modelling.

2. Material and methods
2.1. Beetle samples
Chalcothea smaragdina specimens were obtained from a commer-
cial insect retailer (http://www.insect-sale.com). Cuticle

samples were examined from numerous exoskeleton sites

across multiple specimens; the micrographic and optical analyses

presented herein concentrate on samples removed from the

specimens’ dorsal regions.

2.2. Optical imaging
Chalcothea smaragdina specimenswere photographedwith a Canon
EOS-1000D camera equipped with a Canon EF 12 II extension

tube. Each specimen was photographed through an LCP analyser,

an RCP analyser (both EdmundOptics) andwithout any polarizer

between the camera and the specimen. Small elytral samples, typi-

cally measuring 1–2mm2, were examined using a Zeiss Axiocam

MRc5 USB camera connected to a Zeiss Axioskop 2 polarizing

optical microscope. The C. smaragdina samples were imaged
using both bright- and dark-field illumination, with CP analysers

positioned in the illuminating and reflected light-paths. CP

imagingwas performed using custom-made Zeiss polarizers com-

prising a linear polarizer in conjunction with a quarter-wave

retarder and also employed in the microspectrophotometry and

imaging scatterometry set-ups.

2.3. Atomic force microscopy
The surface topology of the exterior exoskeleton was imaged

using atomic force microscopy (AFM) for sample areas measur-

ing 50 � 50 mm. For this analysis, cuticle samples were cut and
mounted on AFM stubs. Measurements were performed using

a Nanosurf NaioAFM instrument, equipped with a Nanosensors

PPP-EFM silicon cantilever, in dynamic mode.

2.4. Scanning electron microscopy
The ultrastructure of the surface of C. smaragdina was imaged
using an FEI Nova 600 dual-beam field-emission scanning elec-

tron microscopy (SEM) with an electron beam voltage of 10 kV

and a 7.5 pA beam current. Exoskeleton samples were glued

to an SEM stub using electrically conducting epoxy resin and

subsequently sputter coated with � 6 nm of gold palladium.

2.5. Transmission electron microscopy
Samples were prepared for transmission electron microscopy

(TEM) using a multi-stage process. The samples were first fixed

in 3% glutaraldehyde at 218C for 2 h, followed by rinsing in a
sodium cacodylate buffer. Subsequent fixing in 1% osmic acid

for 1 h preceded: dehydration through an ethanol series (ending

with 100% ethanol), bathing in propylene oxide for 30min and

embedding in Spurr resin. After ultrathin-sectioning using an

ultra-microtome, the samples were stained using first 2% uranyl

acetate and, second, lead citrate before being examined using a

JEOL 100S TEM instrument.

2.6. Circularly polarized reflectance spectrophotometry
Spectral reflectance measurements of the specimen’s CP response

were made using an Ocean Optics HPX-2000 broadband fibre-

coupled light source (185–2000 nm) and an Ocean Optics

USB2000þ spectrometer (200–850 nm). CP light was produced

using a rotatable polarizer, followed by an achromatic Fresnel

rhomb quarter-wave retarder, oriented at 458 azimuth. The Fresnel
rhomb imposes a retardation of p/2 via two instances of total

internal reflection. The CP handedness was selected by setting the

polarizer azimuth to either 08 or 908. Incident light was focused on
to the sample, normal to its surface, using an achromatic 10X objec-

tive lens, producing a beam spot with a diameter of � 30mm. The
reflected light was collected by the same lens before being sub-

sequently directed through a CP analyser comprising the Fresnel

rhomb and a second rotatable polarizer. The system was calibrated

against a plane aluminium mirror of known reflectance.

2.7. Imaging scatterometry
The far-field spatial distribution of the light scattered from the

beetles’ elytra was visualized using an imaging scatterometer

(ISM) [55]. The central component of the ISM is an ellipsoidal

mirror. Small elytral samples are mounted to the tip of a micro-

pipette and positioned in the mirror’s first focal plane. Therefore,

light scattered by the sample into the frontal hemisphere is

focused by the mirror in its second focal plane and projected

by a lens onto its back focal plane, thereby compressing the

2

ht
tp
://
do
c.
re
ro
.c
h



far-field scattering pattern into an image that may be captured

using a CCD camera. Two different illumination conditions are

possible: (i) narrow-beam illumination through a central hole of

the ellipsoidal mirror; (ii) wide-angle illumination via illumina-

tion through the ellipsoidal mirror by light focused from the

second focal-point [56]. Custom-written MATLAB (http://

www.mathworks.com) programs correct the resultant scattero-

grams for aberrations. A piece of MgO served as a white

standard.

2.8. Optical modelling
By adopting the 4 � 4 matrix methodologies for one-dimensional
anisotropic stratified media [57–59] and further incorporating

the scattering matrix modification described by Ko & Sambles

[60], a custom-written code compiled in MATLAB was used to

model the CP reflectance arising due to the specimen’s cuticle

ultrastructure. The helicoidal pitch was assumed to vary continu-

ously throughout the chiral exocuticle, with a resolution of 16

‘sublayers’ per helicoidal period, which was sufficient for the

model to converge. The software package ImageJ (http://

rsbweb.nih.gov/ij/) was used to analyse TEM cross-sections of

the ultrastructure; lamellar pitch lengths, equivalent to eight

‘sublayers’, were extracted to create profiles of the helicoidal

pitch fluctuation, which subsequently informed the ‘sublayer’

thicknesses applied in the modelling. A wavelength-dependent

average for the real component of the refractive index (modelled

using the Sellmeier relation, equation (3.1)) was used to describe

the chitinous ultrastructure, with a fixed extinction coefficient

and a fixed birefringence. Incoherent averaging was applied to

account for localized variations in the lamellar pitch values fed

into the model, which reduces spectral modulation [54].

3. Results
3.1. Optical appearance and spectral characteristics
The cetoniine scarab beetle Chalcothea smaragdina (Gory &
Percheron 1833 [61]; Coleoptera: Scarabaeidae: Cetoniinae) is

indigenous to Indonesia. The body of this flower chafer

grows up to 3 cm in length, with all dorsal regions distinctly

metallic green in appearance. Contrary to many other scara-

baeid beetles, the body is elongated and features a

pronounced, angular pronotum.

Figure 1a–c shows photographs of a beetle under differ-
ent circular polarizers that provide a qualitative assessment

of the specimen’s CP properties. In common with the CP

response typically associated with several genera of scara-

baeid beetles [22,37,51,52], the photographs illustrate that

C. smaragdina exhibits the selective reflection of LCP light
exclusively. Observing C. smaragdina through an LCP analy-
ser thus accentuates the specimen’s metallic green colour

appearance; by contrast, repeating the observation using an

RCP analyser leads to the specimen’s colour being effectively

extinguished over the entirety of its exoskeleton.

Closer inspection of the exoskeleton surface using optical

microscopy is shown in figure 1d–g. The images reveal the
elytral surface to possess a reticulated structure comprising

elongated, irregularly shaped domains that run approximately

latitudinally across the whole breadth of the elytra. This

morphology is most starkly represented in the optical micro-

graph corresponding to dark-field illumination (figure 1e),
leading to the inference that this reticulated surface patterning

dominates the beetle’s colour at oblique angles; the domain

interiors predominantly exhibit specular reflection. As shown

in figure 1b,c respectively, the photographs using an LCP and
RCP filter show the strong accentuation and depletion of the

specimen’s green colour appearance. To quantify this, we

measured the CP-dependent reflectance of the elytral surface,

shown in figure 2a. For LCP light, a pronounced optical
bandgap is observed, with a principal reflection peak centred

at � 565 nm and a less intense feature at � 585 nm, which
extends the long-wavelength band-edge. These spectral fea-

tures correspond to the saturated green-orange colour

observed in figure 1b,f; the RCP analysis shows an absence of
distinguishable spectral features. Outside of the optical

bandgap observed for the LCP spectrum, the cross-polarized

reflection shown in figure 1b exhibits a relatively feature-
less Fresnel-type reflection. Confined to the bandwidth of

the LCP co-polarized reflection feature, a small spectral

modulation is displayed in the cross-polarized response.

3.2. Integument ultrastructure
To further explore the reticulated surface morphology ident-

ified in the optical micrographs, elytral samples were

examined using both SEM and AFM. Elucidating the exterior

features using SEM imaging resolved the precise topography

of the reticulated surface structure. Typically, the elongated

domains observed in the optical micrographs were not fully

enclosed, with the mesh-like appearance arising due to

(a)

(d) (e)

(b) (c)

( f ) (g)

Figure 1. (a– c) Photographs of C. smaragdina capturing the beetle’s
appearance for the following configurations: (a) without an analysing
filter, (b) through an LCP analyser and (c) through an RCP analyser. The
photographs show that the beetle selectively reflects LCP light. (d–g) Optical
micrographs of the elytral surface corresponding to: (d ) unpolarized bright-
field illumination; (e) unpolarized dark-field illumination; ( f ) with the
reflected light analysed using an LCP filter; (g) with the reflected light ana-
lysed using an RCP filter. A reticulated surface patterning is revealed which
scatters light to oblique angles under dark-field illumination. Scale bars, (a) 1
cm and (d–g) 50 mm.
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deviations in the direction followed by the otherwise approxi-

mately parallel surface striations (figure 3a). In addition, the
edges of these striations were shown to possess a fine irregular

sawtooth-like profile parallel to the surface plane (figure 3b).
The surface topography was further explored using dynamic

mode AFM to reveal a quasi-regular surface periodicity mani-

fested by the pronounced acclivities and declivities at the

edges of the striations (figure 3c). A line scan traversing the sur-
face of C. smaragdina reveals that its surface topography closely
resembles a blazed grating structure (figure 3d). Although the
spacing between individual striations exhibits some variation

due to the irregular geometry of the surface patterning, we

found the grating structure to have a mean periodicity of

5.07+0.11mm. Analysis of AFM measurements from several

elytral locations revealed that the blaze profile typically extends

from the surface to a mean height of 118+6 nm. These dimen-
sions correspond to a blaze angle of� 3.18. The wavelength of
light for which scattering is optimized by this configuration is

lb ¼ 2a sinub, where a is the grating periodicity and ub is the

blaze angle; substituting the values measured for C. smaragdina
results in lb � 548 nm.
To determine the origin of the specimen’s LCP colour

appearance, the underlying photonic ultrastructure of

C. smaragdina was investigated using TEM. The TEM cross-

section image shown in figure 4a displays the exocuticle
ultrastructure, responsible for producing the specimen’s

colour, in its entirety. A lamellar arrangement is apparent

throughout the full depth of the exocuticle, which was

measured to have a total thickness ranging from 10 to 11mm

across several sample locations. The inter-lamellar contrast is

consistent with TEM studies of other CP reflectors identified

in scarabaeid species [20,21,62], as opposed to the starkly con-

trasted alternating layers commonly observed in traditional

coleopteran multilayer reflectors such as those found in

buprestid beetles [32,63,64]. The lamellar appearance indicates

that the C. smaragdina exocuticle comprises a helicoidal mor-
phology (figure 4c), where the individual lamellae represent
the rotation of the constituent chitin microfibrils through an

angle of 1808 and, therefore, the parallel alignment of the
microfibrils. Thus, each lamellar pitch length corresponds to

half the helicoidal period. This assembly is displayed clearly

in the magnified TEM image shown in figure 4b. The inter-
lamellar distances were measured to ascertain the distribution

of lamellar pitch lengths throughout the depth of the exocuti-

cle. The lamellar pitch profile for the C. smaragdina helicoid is
presented in figure 4d. It shows that although the lamellar
pitch length undulates continuously throughout the exocuticle,

the amplitude of these undulations is small (� 5–10 nm). The
profile shows that the lamellar pitch length varies between

160 and 180 nm, with the mean lamellar pitch length

169.7+5.1 nm. Consequently, the mean pitch of the helicoid
is � 340 nm. Lamellar pitch profiles were constructed relating
to several measurement locations from elytral samples,

with the total number of lamellae measured showing high

consistency, ranging from 68 to 72.

3.3. Modelling of the beetle’s circular polarization
reflectance

The analysis of the lamellar pitch distribution allowed us to

perform electromagnetic simulations. For this, we implemented

the ultrastructure of the exocuticle and calculated the total CP

response at normal incidence, the results ofwhich are presented

in figure 2b. The helicoidal morphology comprising the exocu-
ticle of C. smaragdina was treated as an anisotropic stratified
medium with the helicoidal period defined using the TEM-

based analysis outlined above. The calculated co-polarized

and cross-polarized CP spectra shown in figure 2b correspond
to an exocuticle structure comprising 35 full rotations of the heli-

coid. The specific sublayer thicknesses, from which the

constituent helicoidal periods were constructed, were calcu-

lated using the mean lamellar pitch values represented by the

green circles in figure 4d. As mentioned in §2.8, the average
value of the real component of the structure’s refractive index

(�n) was described using the Sellmeier relation:

�n2 ¼ 1þ 1:447776l2

l2 � 0:017085 , ð3:1Þ

with the wavelength dimensions in micrometres. Subsequen-

tly, the real components of the extraordinary and ordinary

refractive indices (ne and no) were calculated using a fixed bire-
fringence ofDn ¼ 0.018 [53]. The basis for choosing these values
is discussed further in §4.1. ThemodelledCP reflectance closely

matches the experimental CP reflectance measurements shown

in figure 2a with regards to the shape and position of

the spectral features, particularly so for the co-polarized CP

spectra. The small oscillatory feature recorded in the experimen-

tal measurement of the cross-polarized response, spanning the

breadth of the LCP bandgap, was not replicated in the model.

Additionally, the simulation predicts a slightly increased inten-

sity in the LCP reflectance (� 4%). The difference in intensity
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Figure 2. (a) Spectrophotometry measurements showing both the co-polar-
ized (LCP and RCP) and cross-polarized (LCP/RCP) CP reflectance spectra for
C. smaragdina. (b) Optical modelling of the co-polarized and cross-polarized
reflectance from the specimen.
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between the experimental and modelled LCP co-polarized

response from the structure is discussed below.

3.4. Angle-dependency and scattering of circular
polarization colour

The effect of both the blazed surface topography and

the helicoidal ultrastructure on the reflection properties of

C. smaragdinawas further investigated using imaging scattero-
metry. Upon illumination of the elytron with an unpolarized,

narrow-aperture light beam, the captured scattering pattern

demonstrates highly directional reflection from the sample sur-

face; a series of diffracted orders is observed, extending radially

outwards from the image centre along the direction perpen-

dicular to the surface striations (figure 5a). The green colour
of the scattered light shows good agreement with the blaze

wavelength anticipated from the analysis of the surface ultra-

structure. We note that the central reflection, upon shorter

exposure times, is also strongly green, in full accordance with

the observations from optical microscopy (figure 1d,f ).
When the sample is illuminated with a wide-aperture

beam via the ellipsoidal mirror at the core of the scatterom-

eter, the angle-dependency of the photonic structure in

C. smaragdina’s elytron can be assessed [32,56]. Figure 5b pre-
sents the scatterogram of the specimen’s elytron using

unpolarized light. The sample displays relatively weak irides-

cence, with the reflected green colour remaining essentially

unaltered for scattering angles extending from normal inci-

dence to approximately 508. At this point, a slight blue-shift
in the reflected hue is observed and an annulus of blue-

green colour can be seen that extends to the circular line

denoting a scattering angle of 608. For larger scattering
angles (�608), the surface reflectance becomes dominant
and shows a strong whitish reflectance.

We repeated this measurement using an LCP and RCP ana-

lyser, respectively, positioned such that they acted to impart

their CP handedness to the incident beam and also analyse

the CP state of the reflected light. The LCP–LCP and RCP–

RCP co-polarized scatterograms are shown in figure 5c,d,
respectively. These scatterograms display close agreement

with the optical images and CP reflectance spectra presented

above. For scattering angles �608, the specimen’s LCP green
reflected colour is more saturated compared to the unpolarized

scatterogram (figure 5b), whilst the reflected colour is extin-
guished for the RCP-RCP scatterogram. The blue and brown

fringes observed for scattering angles greater than 608 are arte-
facts that arise when investigating chiral samples using the

ISM. Following oblique angle illumination with CP light, the

handedness of the reflected light loses its purity at high scatter-

ing angles since the degree of CP is diminished. The coloured

fringes correspond to the axes of the linear polarizer com-

ponent of the analysing filter and are attributed to the

chromatic dispersion of the analyser.

4. Discussion
4.1. Optical effect of the helicoidal morphology
In selectively reflecting LCP light, C. smaragdina displays the
archetypal optical response associated with Bouligand-type
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Figure 3. (a,b) SEM images detailing the reticulated elytral surface structure for C. smaragdina. (c,d ) AFM measurements reveal the form of the blazed grating-like
surface topography, with the dashed black line in (c) corresponding to the line profile shown in (d ). Both techniques provided physical dimensions describing the
blazed surface topography. Scale bars, (a) 30mm and (b) 5mm.
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structures found in biological systems. The cardinal factor

that determines the handedness of the reflected light is the

direction of rotation in which the helicoidal ultrastructure

assembles prior to sclerotization. The reflection of LCP light

is manifested by an anticlockwise rotation of the helicoidal

architecture. From the TEM-constructed lamellar pitch profile

(figure 4d ), we were able to establish the average pitch of
the helicoid (� 340+ 10 nm). At normal incidence, periodic

helicoidal structures exhibit Bragg reflection, with a peak

wavelength, l0, given by l0 ¼ 2d�n, where �n represents the
average refractive index and d is the lamellar pitch length
(or helicoidal half-pitch) [21,65]. It should be noted that

over many repeat measurements of the CP reflectance,

small variations in the LCP spectral profile were observed

in response to localized changes to the area of illumination,

with the greatest variability occurring for the long-wave-

length band-edge. This can be attributed to the undulations

observed in the lamellar pitch distribution profile; where
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Figure 4. (a) TEM cross-section showing the full extent of the photonic ultrastructure within the specimen’s dorsal pygidial cuticle. (b) High-magnification
TEM cross-section showing the Bouligand structure within the beetle’s elytral exocuticle. (c) Schematic of the helicoidal morphology within the C. smaragdina
exocuticle. The helicoid is formed by a lamellar stack comprising successively rotated chitin microfibril layers. (d ) Lamellar pitch profile describing the distribution
of helicoidal periods in C. smaragdina. Each lamellar pitch measurement (black crosses) represents the distance for which the chitin microfibrils comprising the
helicoid rotate through 1808. The mean lamellar pitch measurements (green circles) fitted using a spline interpolation (green line) are also shown. Scale bars,
(a) 3 mm and (b) 200 nm.

(a) (b) (c) (d)

Figure 5. ISM results obtained for C. smaragdina, showing the far-field scattering arising following (a) narrow-aperture illumination and (b–d ) wide-aperture
illumination using the ISM. (c,d ) Angle-dependent scattering pattern upon insertion of a left- and right-handed circular polarizer in the detection pathway.
The images are cropped around the central axis due to polarization accuracy. Moving radially outwards from the scatterogram centres, the red circles denote scatter-
ing angles of 58, 308, 608 and 908.
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more prominent peaks in the pitch occur closer to the

proximal edge of the exocuticle, an increase in the

longer-wavelength component of the reflection is observed.

Typically, spectral measurements of C. smaragdina showed
peak reflectance at � 560–570 nm; a Bragg response at these
wavelengths is satisfied by �n � 1:647–1.676. The existing lit-
erature provides a broad range for the refractive index of

chitinous material encountered in the ultrastructure of arthro-

pods [53,64,66–69]; here, simulations of the CP reflection

observed for C. smaragdina were informed using Caveney’s
measurement of the average refractive index for the cetoniine

specimen Protaetia (formerly Potosia) speciosissima (�n ¼ 1:595)
[53] and, also, wavelength-dependent refractive index data

for chitin and uric acid published by Vargas et al. [70]. In this
case, the authors performed measurements on fresh shrimp

shells. Although smaller, Caveney’s value is comparable to

that anticipated by the spectral measurements; however, its

use does lead to the modelled LCP bandgap being slightly

blue-shifted. Further considering the applicability of this

refractive index value, it is noted that concurrent investigations

into the optical characteristics of broadband reflecting scara-

baeids indicated that the cuticle incurs a small degree of

shrinkage (approx. 5–10%) during the TEM preparation pro-

cess. This artefact represents a historical challenge faced

when preparing biological samples for TEM [71]. To facilitate

a direct comparison between measured and modelled spectra,

close agreement with the experimentally measured LCP spec-

tra was achieved (figure 2) by applying a scaling factor of 1.05

to the sublayer thicknesses defining the modelled structure

(figure 4d).
The electromagnetic simulations of the CP response

further predicted a greater LCP reflectance than measured in

experiments. A number of previous studies concerning the

reflection of CP light by coleopteran species have focused

upon rutelinid scarabs belonging to the Chrysina genus
[20,21,72–74]. Several of these beetles display silver and gold

hues owing the chirped distribution of pitch lengths within

their helicoids [62,72,73,75]. Additionally, the intensity of LCP

light reflected by these brilliantly coloured specimens, in

response to illumination at normal incidence, exceeds that

observed herein for C. smaragdina [72]. This result requires con-
sideration since the number of full rotations of theC. smaragdina
helicoid (� 35) is only slightly fewer than typically observed in
broadband Chrysina specimens (� 40). Furthermore, the lamel-
lar pitch lengths measured for C. smaragdina’s narrowband
reflecting cuticle are concentrated over a far narrower range of

values, which should increase the reflected intensity.

Two likely factors are considered as contributing to the

lower luminance measured for C. smaragdina. Firstly, Caveney
demonstrated that the coruscating precious metal-like colours

of species such as Chrysina resplendens are reliant on the pres-
ence of uric acid within the ultrastructure, which enhances its

birefringence significantly [53]. Indeed, the birefringence in

species such as Chrysina aurigans has been reported to be as
high as 0.19 [76]. By contrast, Caveney reported an absence

of uric acid in the exocuticle of P. speciosissima, subsequently
measuring the birefringence to be 0.018 [53]. In the view of this

factor,wehave considered the refractive indexdata of bothCave-

ney and Vargas et al. [70]. By applying an effective medium
approximation, the effect of altering the concentration of uric

acid can be explored. FollowingCaveney’s conclusion thatP. spe-
ciosissima containsnouric acid component, the data presented by
Vargas et al. indicates that a structure comprised purely of chitin

has an average refractive index of �1.55 at 525 nm. Of course,
the hierarchical structures formed by scarab beetles and crus-

taceans likely exhibit differences in how they incorporate chitin

crystallites into a protein matrix. Subsequently, by adopting the

measurements published by Vargas et al. [70] we found that a
uric acid fraction of 0.2 yielded Caveney’s value of 1.595 at 525

nm while also accounting for material dispersion.

Consequently, the reduced specular CP reflection from

C. smaragdina may be principally attributed to the absence,
or at least low concentration, of uric acid in the structure

since this limits the birefringence achievable within the exo-

cuticle structure. We note, however, that the scattering from

the surface topography will also play an important role, as

is discussed in the following section.

4.2. Optical effect of the surface topography
The reticulated surface topography exhibited by C. smaragdina
was elucidated initially through optical microscopy (figure 1)

and in more detail via SEM and AFM measurements

(figure 3). As illustrated in figure 5a, the diffractive scatter-
ing that results due to this component of the specimen’s

structure reflects a proportion of incident light away from

the direction normal to the sample surface. As a result, the

amount of incident light that interacts with the underlying

helicoid is modulated.

The optical scattering behaviour resulting from the blazed

grating-like surface topography encountered for C. smaragdina
is elucidated in the imaging scatterogram shown in figure 5a.
Diffracted orders are observed perpendicular to the direction

in which the specimen’s surface striations are oriented. Clear

resolution of the individual diffracted modes captured in

figure 5a is only accessible via narrow-beam illumination and
requires a small beam spot. The quasi-order resulting from

the imperfect geometry of the blazed architecture leads to

increased interference between the elements of the diffraction

pattern as the size of the illumination spot increases. Overall,

the optical characteristics arising from blazed grating-like

structures have received little attention in beetle species,

and are more typically associated with photonic systems in

Lepidoptera [77,78]. Other lepidopteran species, notably

Morpho [79] and Ancyluris [80] butterflies, have also been
reported to exhibit highly directional scattering. Diffraction

gratings enabling spectral iridescence are by no means uncom-

mon amongst coleopteran species, however, having been

identified in one of the earliest electron microscope studies of

structurally coloured insects [81]. Across several papers,

Hinton & Gibbs described diffraction gratings in phalacrid

[82], carabid [83] and gyrinid [84] beetles.

One report describing similar blazed grating structures

in cetoniine scarabs was made by Xu et al. [85]. The authors
examined three species of cetoniine scarab beetles, all of

which possess topographical surface features remarkably

similar to those observed here for C. smaragdina. SEM images
of the specimens investigated by Xu et al. [85], which belong
to theMycterophallus and Lomaptera genera, revealed striations
with a finer periodicity than that observed for C. smaragdina in
two of the three specimens examined. These species exhibited a

grating periodicity between 1 and 2mm. Moreover, both these

species displayed the sawtooth-like profile along the striation

edges with greater regularity relative to C. smaragdina. The
third beetle appeared to show grating dimensions closer to

those of C. smaragdina (� 4–5mm), although the relatively
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small surface area displayed in the image limited the extent to

which comparisons could be made. Qualitative analysis of the

beetles appeared to show each beetle exhibiting spectral irides-

cence under ‘bright’ illumination [85].

Beyond confirming the reflection of LCP light in two of the

investigated specimens, the authors offerednoadditional insight

into the CP behaviour exhibited by the beetles. The observation

ofCP reflected light for species belonging to theLomaptera genus
has been reported elsewhere, first by Neville & Caveney [37],

and, more recently, by Carter et al. [86], although, neither
makes reference to the beetles’ surface topography. Xu et al.
[85] presented a simplifiedmodel for the origin of the reflectance

of the exocuticle structures revealed via TEM cross-sections,

in which traditional multilayer reflectors, formed from alter-

nating layers comprising distinct materials of high and low

refractive index, were assumed. While such reflectors are

common among coleopteran species, and indeed many other

one-dimensional biological photonic systems, this scalar

approximation neglects the chiral aspect of the cuticle and the

resulting CP component of the observed reflectance.

Forwide-beam illumination, the scattering imparted by the

surface topography is less obvious since the structure is being

simultaneously illuminated over all incident angles. In optics,

stratified structures exhibiting appropriate periodicity tend to

behave as one-dimensional photonic crystals. For specularly

reflecting systems, illumination at oblique angles results in iri-

descence manifested as a blue-shift in the reflected colour; the

wavelength of the first-order Bragg reflection peak is given by

l ¼ 2d�n cos (u), where u is the angle between the propagation
direction and the axis of the helicoid [87]. However, as indi-

cated by the scatterograms corresponding to the unpolarized

and LCP–LCP co-polarized configurations (figure 5b,c),
C. smaragdina’s blazed surface profile may suppress the irides-
cent response from the underlying helicoidal reflector. The

ensemble colour is attributed to the sum of the scattered

reflections, with additional interference attributed to the irre-

gularities observed in the surface topography. Indeed, the

beetle’s green colour is expected to extend to high scattering

angles as evidenced by dark-field optical microscopy obser-

vations (figure 1e). Similar effects, albeit from different

structural configurations, have previously been observed in

wide-beam illumination scatterometry of weevil scales [17]

and of the dorsal wing scales of the butterfly Parides sesostris
[88]. In theweevils’ case, their elytral scales comprisemany dif-

ferently oriented crystal domains. The interference of reflected

light from the individual domains creates an additive effect

that gives rise to an angle-independent colour appearance

[17]. Parides sesostris, on the other hand, uses an entirely differ-
ent mechanism; a pigmented honeycomb structure situated in

the upper lamina of the elytra inhibits the iridescent behaviour

arising from its gyroid photonic crystal structure [88].

4.3. Biological significance
The question of whether this dual structural colour producing

system is designed to fulfil a precise ecological function cannot

be answered conclusively. Cetoniinae primarily feed from

the entomophilous flowers of tropical rainforest flora and are

diurnally active, therefore, the green colour appearance

of C. smaragdina is anticipated to aid its camouflage against
potential predators. Additional optical functionality may be

provided by the beetle’s surface topography; by acting to

both reduce the intensity of the specular reflection from the

beetle’s surface and suppressing iridescence, the grating

structure may further assist crypsis among the Indonesian

rainforest. This represents a deviation from grating structures

that produce spectral iridescence, which have been hypoth-

esized to have either aposematic functionality, or to confuse

depth- and/or colour-perception in predators [12].

On the other hand, as the three flower chafers investigated

by Xu et al.were predominantly red or black in colour [85], any
visual benefit may be secondary; it is equally possible that non-

visual functionality may have driven the evolution of grating

structures in certain Coleoptera. It has been suggested that dif-

fraction gratings provide friction-reducing and water-repellent

capabilities to certain beetles and that blazed gratings, in par-

ticular, allow burrowing species movement in compressed

environments [12]. However, this behaviour is not typically

associated with cetoniine species.

While Bouligand-type structures are extremely common in

crustaceans, significantly enhancing themechanical strength of

their exoskeletal armours [44,45], it is not immediately obvious

why this morphology would be adopted in some coleopteran

species but not others unless it serves an alternative purpose.

At present, the visual systems of Coleoptera represents a gap

in the general breadth of knowledge concerning arthropod

vision. For example, it is known that fluorescent signalling is

used by birds [89], spiders [90], fish [91] and mantis shrimp

[92]. More pertinently, stomatopods can detect CP stimuli

[93] and, further, actively rotate their eyes to align particular

photoreceptors to optimize their detection of polarized signals

[94]. Some debate remains as to whether scarabaeid beetles are

capable of detecting CP signals. Brady & Cummings reported

that the jewel scarab Chrysina gloriosa is capable of differentiat-
ing between light sources of equal intensity based upon their

polarization signatures alone [95]. By contrast, another jewel

scarab,C.woodi, exhibited no phototactic discrimination.More-
over, Blaho et al. [96] investigated four scarab beetles including
two cetoniine species, Cetonia aurata and Potosia cuprea, finding
no evidence of a behavioural repsonse to CP light. Clearly,

further behavioural experiments have to resolve this enigma.

In addition to considering the potential biological significance

of the reflecting and scattering structures encountered in these

beetles, the developing understanding of their optical function

also serves to inform future biomimetic technologies. For

example, cellulose nano-crystals are the subject of efforts to

create synthetic helicoidal architectures [97].

5. Conclusion
The flower chafer C. smaragdina displays a metallic green colour
appearance. As described for beetles belonging to several other

subfamilies of Scarabaeidae, the colour of C. smaragdina arises
due to the helicoidal ultrastructure of its exocuticle, which

performs as a Bragg reflector of LCP light, as previously

described for beetles belonging to several other subfamilies

of Scarabaeidae. Unlike the majority of beetles exhibiting CP

reflection properties, however, C. smaragdina possesses a quasi-
regular blazed grating surface structure. As a consequence,

C. smaragdina exhibits the angle-independent suppression of
the reflection of RCP light, while the scattering of light by the

beetle’s surface topography enhances the angle-independence

of its green colour. In this way, the blazed surface topography

may assist in modulating the metallic appearance of
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C. smaragdina sufficiently that it is afforded more complete
camouflage when feeding on the surface of rainforest flora.
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Cétoines et genres voisins, formant, dans les familles
naturelles de Latreille, la division des Scarabées
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