1,466 research outputs found

    Temperature dependence of coherent oscillations in Josephson phase qubits

    Full text link
    We experimentally investigate the temperature dependence of Rabi oscillations and Ramsey fringes in superconducting phase qubits driven by microwave pulses. In a wide range of temperatures, we find that both the decay time and the amplitude of these coherent oscillations remain nearly unaffected by thermal fluctuations. The oscillations are observed well above the crossover temperature from thermally activated escape to quantum tunneling for undriven qubits. In the two-level limit, coherent qubit response rapidly vanishes as soon as the energy of thermal fluctuations kT becomes larger than the energy level spacing of the qubit. Our observations shed new light on the origin of decoherence in superconducting qubits. The experimental data suggest that, without degrading already achieved coherence times, phase qubits can be operated at temperatures much higher than those reported till now.Comment: 4 pages, 4 figure

    Thermally activated conductance in arrays of small Josephson junctions

    Full text link
    We present measurements of the temperature-dependent conductance for series arrays of small-capacitance SQUIDs. At low bias voltages, the arrays exhibit a strong Coulomb blockade, which we study in detail as a function of temperature and Josephson energy EJE_J. We find that the zero-bias conductance is well described by thermally activated charge transport with the activation energy on the order of ΛEC\Lambda E_C, where Λ\Lambda is the charge screening length in the array and ECE_C is the charging energy of a single SQUID.Comment: 6 pages, 3 figure

    Фізична модель трьохкоординатного технологічного комплексу на базі СО2-Laser

    Get PDF
    В статье рассматривается физическая модель высокопроизводительного лазерного технологического комплекса (ЛТК) на основе CO2 –Laser SM-1200. У статті розглядаєтся фізична модель високопродуктивного лазерного технологічного комплекса (ЛТК) на основі CO2 –Laser SM-1200. In this article a physical model of a high-performance laser technological complex (LTC) on the basis of CO2-Laser SM-1200 is considered

    Imaging collective behavior in an rf-SQUID metamaterial tuned by DC and RF magnetic fields

    Full text link
    We examine the collective behavior of two-dimensional nonlinear superconducting metamaterials using a non-contact spatially resolved imaging technique. The metamaterial is made up of sub-wavelength nonlinear oscillators in a strongly coupled 27x27 planar array of radio-frequency Superconducting QUantum Interference Devices (rf SQUIDs). By using low-temperature laser scanning microscopy we image microwave currents in the driven SQUIDs while in non-radiating dark modes and identify the clustering and uniformity of like-oscillating meta-atoms. We follow the rearrangement of coherent patterns due to meta-atom resonant frequency tuning as a function of external dc and rf magnetic flux bias. We find that the rf current distribution across the SQUID array at zero dc flux and small rf flux reveals a low degree of coherence. By contrast, the spatial coherence improves dramatically upon increasing of rf flux amplitude, in agreement with simulation.Comment: 16 pages including Supp. Ma

    Quantitative evaluation of defect-models in superconducting phase qubits

    Get PDF
    We use high-precision spectroscopy and detailed theoretical modelling to determine the form of the coupling between a superconducting phase qubit and a two-level defect. Fitting the experimental data with our theoretical model allows us to determine all relevant system parameters. A strong qubit-defect coupling is observed, with a nearly vanishing longitudinal component. Using these estimates, we quantitatively compare several existing theoretical models for the microscopic origin of two-level defects.Comment: 3 pages, 2 figures. Supplementary material, lclimits_supp.pd

    Entangling microscopic defects via a macroscopic quantum shuttle

    Full text link
    In the microscopic world, multipartite entanglement has been achieved with various types of nanometer sized two-level systems such as trapped ions, atoms and photons. On the macroscopic scale ranging from micrometers to millimeters, recent experiments have demonstrated bipartite and tripartite entanglement for electronic quantum circuits with superconducting Josephson junctions. It remains challenging to bridge these largely different length scales by constructing hybrid quantum systems. Doing this may allow for manipulating the entanglement of individual microscopic objects separated by macroscopically large distances in a quantum circuit. Here we report on the experimental demonstration of induced coherent interaction between two intrinsic two-level states (TLSs) formed by atomic-scale defects in a solid via a superconducting phase qubit. The tunable superconducting circuit serves as a shuttle communicating quantum information between the two microscopic TLSs. We present a detailed comparison between experiment and theory and find excellent agreement over a wide range of parameters. We then use the theoretical model to study the creation and movement of entanglement between the three components of the quantum system.Comment: 11 pages, 5 figure

    Quantum dissociation of a vortex-antivortex pair in a long Josephson junction

    Full text link
    We report a theoretical analysis and experimental observation of the quantum dynamics of a single vortex-antivortex (VAV) pair confined in a long narrow annular Josephson junction. The switching of the junction from the superconducting state to the resistive state occurs via the dissociation of a pinned VAV pair. The pinning potential is controlled by external magnetic field HH and dc bias current II. We predict a specific magnetic field dependence of the oscillatory energy levels of the pinned VAV state and the crossover to a {\it macroscopic quantum tunneling} mechanism of VAV dissociation at low temperatures. Our analysis explains the experimentally observed {\it increase} of the width of the switching current distribution P(I)P(I) with HH and the crossover to the quantum regime at the temperature of about 100 mK.Comment: 4 pages, 3 figure

    A tunable rf SQUID manipulated as flux and phase qubit

    Full text link
    We report on two different manipulation procedures of a tunable rf SQUID. First, we operate this system as a flux qubit, where the coherent evolution between the two flux states is induced by a rapid change of the energy potential, turning it from a double well into a single well. The measured coherent Larmor-like oscillation of the retrapping probability in one of the wells has a frequency ranging from 6 to 20 GHz, with a theoretically expected upper limit of 40 GHz. Furthermore, here we also report a manipulation of the same device as a phase qubit. In the phase regime, the manipulation of the energy states is realized by applying a resonant microwave drive. In spite of the conceptual difference between these two manipulation procedures, the measured decay times of Larmor oscillation and microwave-driven Rabi oscillation are rather similar. Due to the higher frequency of the Larmor oscillations, the microwave-free qubit manipulation allows for much faster coherent operations.Comment: Proceedings of Nobel Symposium "Qubits for future quantum computers", Goeteborg, Sweden, May 25-28, 2009; to appear in Physica Script

    Enhanced Macroscopic Quantum Tunneling in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} Intrinsic Josephson Junction Stacks

    Full text link
    We have investigated macroscopic quantum tunneling in Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} intrinsic Josephson junctions at millikelvin temperatures using microwave irradiation. Measurements show that the escape rate for uniformly switching stacks of N junctions is about N2N^2 times higher than that of a single junction having the same plasma frequency. We argue that this gigantic enhancement of macroscopic quantum tunneling rate in stacks is boosted by current fluctuations which occur in the series array of junctions loaded by the impedance of the environment.Comment: 4 pages and 5 figure
    corecore