30 research outputs found

    Determinants of female fecundity in a simultaneous hermaphrodite: the role of polyandry and food availability

    Get PDF
    Classical sexual selection theory assumes that the reproductive success of females is primarily limited by the resources available for egg production rather than by the number of mating partners. However, there is now accumulating evidence that multiple mating can entail fitness costs or benefits for females. In this study we investigated the effect of polyandry (i.e., the mating with different mating partners) and food availability on the reproductive output of the female sex function in an outcrossing simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. We exposed virgin worms to different group sizes, a treatment that has previously been shown to affect the level of polyandry in this species. Moreover, we manipulated the food availability throughout the subsequent egg laying period, during which the worms were kept in isolation. The number of offspring produced was used as an estimate of female fecundity. We found that food availability, but not group size, had a significant effect on female fecundity. Additionally, female fecundity was positively correlated with the number of stored sperm in the female sperm-storage organ at the time of isolation, but it was not correlated with body or ovary size of the worms. Our results suggest that female fecundity in M.lignano is primarily determined by the resources available for egg production, and not by the level of polyandry, confirming classic sexual selection theory for simultaneous hermaphrodite

    P2Y2R Signaling Is Involved in the Onset of Glomerulonephritis

    Get PDF
    Endogenously released adenosine-5’-triphosphate (ATP) is a key regulator of physiological function and inflammatory responses in the kidney. Genetic or pharmacological inhibition of purinergic receptors has been linked to attenuation of inflammatory disorders and hence constitutes promising new avenues for halting and reverting inflammatory renal diseases. However, the involvement of purinergic receptors in glomerulonephritis (GN) has only been incompletely mapped. Here, we demonstrate that induction of GN in an experimental antibody-mediated GN model results in a significant increase of urinary ATP-levels and an upregulation of P2Y2R expression in resident kidney cells as well as infiltrating leukocytes pointing toward a possible role of the ATP/P2Y2R-axis in glomerular disease initiation. In agreement, decreasing extracellular ATP-levels or inhibition of P2R during induction of antibody-mediated GN leads to a reduction in all cardinal features of GN such as proteinuria, glomerulosclerosis, and renal failure. The specific involvement of P2Y2R could be further substantiated by demonstrating the protective effect of the lack of P2Y2R in antibody-mediated GN. To systematically differentiate between the function of P2Y2R on resident renal cells versus infiltrating leukocytes, we performed bone marrow-chimera experiments revealing that P2Y2R on hematopoietic cells is the main driver of the ATP/P2Y2R-mediated disease progression in antibody-mediated GN. Thus, these data unravel an important pro-inflammatory role for P2Y2R in the pathogenesis of GN

    mTORC2 critically regulates renal potassium handling

    Get PDF
    The mTOR pathway orchestrates cellular homeostasis. The rapamycin-sensitive mTOR complex (mTORC1) in the kidney has been widely studied; however, mTORC2 function in renal tubules is poorly characterized. Here, we generated mice lacking mTORC2 in the distal tubule (Rictorfl/fl Ksp-Cre mice), which were viable and had no obvious phenotype, except for a 2.5-fold increase in plasma aldosterone. Challenged with a low-Na+ diet, these mice adequately reduced Na+ excretion; however, Rictorfl/fl Ksp-Cre mice rapidly developed hyperkalemia on a high-K+ diet, despite a 10-fold increase in serum aldosterone levels, implying that mTORC2 regulates kaliuresis. Phosphorylation of serum- and glucocorticoid-inducible kinase 1 (SGK1) and PKC-α was absent in Rictorfl/fl Ksp-Cre mice, indicating a functional block in K+ secretion activation via ROMK channels. Indeed, patch-clamp experiments on split-open tubular segments from the transition zone of the late connecting tubule and early cortical collecting duct demonstrated that Ba2+-sensitive apical K+ currents were barely detectable in the majority of Rictorfl/fl Ksp-Cre mice. Conversely, epithelial sodium channel (ENaC) activity was largely preserved, suggesting that the reduced ability to maintain K+ homeostasis is the result of impaired apical K+ conductance and not a reduced electrical driving force for K+ secretion. Thus, these data unravel a vital and nonredundant role of mTORC2 for distal tubular K+ handling

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Mating behaviour of the marine turbellarian Macrostomum sp. : these worms; suck

    Get PDF
    Simultaneous hermaphrodites experience unique conflicts of interest during reproduction, some of which are reflected in their complex mating behaviours. We here provide the first detailed description of the mating behaviour of a marine flatworm of the genus Macrostomum, a cosmopolitan group of microturbellaria. Mating in this species is usually initiated by the precopulatory behaviours circling and reeling, then leads to reciprocal copulation where worms mutually insert their copulatory stylet, and often ends in an intriguing postcopulatory sucking behaviour. We provide detailed data on the frequencies and durations of the different behaviours, and examine some biotic and abiotic factors that could influence the mating rate. We further speculate on the function of sucking and suggest that it could be an adaptation for the digestion of sperm and/or the removal of seminal components, which may function as allohormones

    The value of Chinese patents: An empirical investigation of citation lags

    No full text
    China has been experiencing a substantial growth in patent applications. But is this increase accompanied by a similar increase in patent value? To assess this question, we examine the citation lag of Chinese patents as a proxy of patent value in comparison with patents from the US, Europe, Japan, and Korea. Our empirical analysis comprises a unique data set of 60,000 patents with priority years between 2000 and 2010. Utilizing Cox regressions, our results show that Chinese patents suffer from a large citation lag in comparison to international patents, indicating a lower value. This is especially true for patents filed domestically. However, we find empirical support for an increasing patent value in more recent patents. China shows a strong dynamic in the field of patenting and our results suggest that the gap between Chinese patents and international patents might narrow down in the near future

    Reliable Surface Area Assessment of Wet and Dry Nonporous and Nanoporous Particles: Nuclear Magnetic Resonance Relaxometry and Gas Physisorption

    No full text
    The reliable assessment of surface area is extremely important for many applications, e.g., catalysis, separation, and energy storage/conversion. Within this context, major progress has been made concerning the textural characterization of porous materials in the gas/dry state, e.g., gas physisorption and mercury porosimetry. However, these methods are not sufficient for the characterization of wet materials utilized in liquid-phase processes. For this, the application of nuclear magnetic resonance (NMR) relaxometry has been considered, but a systematic and rigorous assessment of the applicability of NMR relaxometry for reliable surface and pore size characterization of nanoporous materials is missing. Hence, we present a systematic study in which we assess the applicability of NMR relaxometry for reliable surface area assessment utilizing for the first time true surface area benchmark data based on argon 87 K adsorption on nonporous particles (silica and carbon black) coupled with the development of an advanced methodology including the investigation of the choice of the probe molecule and the effect of its accessibility to the pore network. Our results show that the method provides a fast (a few minutes per measurement) and reliable surface area of silica and carbon black model materials immersed in a liquid phase. In addition, our work clearly demonstrates the potential of NMR relaxometry for the targeted surface area assessment of defined pore classes (here ultramicropores) and suggests a new methodology for the characterization of pore entrances (pore window size). Furthermore, we investigate the effect of wettability and suggest that NMR relaxometry could be developed into a unique tool for assessing the wetting characteristics of adsorbate phases on pore surfaces. This fundamental study can be considered a first major step in enabling NMR relaxometry for reliable surface area assessment for wet materials, particularly relevant for materials used in processes occurring in a liquid phase

    Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm

    No full text
    Janicke T, Sandner P, Ramm SA, Vizoso DB, Schärer L. Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm. Journal of Evolutionary Biology. 2016;29(9):1713-1727

    Data from: Experimentally evolved and phenotypically plastic responses to enforced monogamy in a hermaphroditic flatworm

    No full text
    Sexual selection is considered a potent evolutionary force in all sexually reproducing organisms, but direct tests in terms of experimental evolution of sexual traits are still lacking for simultaneously hermaphroditic animals. Here, we tested how evolution under enforced monogamy affected a suite of reproductive traits (including testis area, sex allocation, genital morphology, sperm morphology and mating behaviour) in the outcrossing hermaphroditic flatworm Macrostomum lignano, using an assay that also allowed the assessment of phenotypically plastic responses to group size. The experiment comprised 32 independent selection lines that evolved under either monogamy or polygamy for 20 generations. While we did not observe an evolutionary shift in sex allocation, we detected effects of the selection regime for two male morphological traits. Specifically, worms evolving under enforced monogamy had a distinct shape of the male copulatory organ and produced sperm with shorter appendages. Many traits that did not evolve under enforced monogamy showed phenotypic plasticity in response to group size. Notably, individuals that grew up in larger groups had a more male-biased sex allocation and produced slightly longer sperm than individuals raised in pairs. We conclude that, in this flatworm, enforced monogamy induced moderate evolutionary but substantial phenotypically plastic responses
    corecore