20 research outputs found

    Functional differences between human CR3 (CD11b/CD18) and CR4 (CD11c/CD18): CD11b dominates iC3b mediated phagocytosis, while CD11c prevails adherence

    Get PDF
    Complement receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18) belong to the family of beta2 integrins and are expressed by several, mainly myeloid cell types in humans. Their function is to mediate iC3b opsonized phagocytosis and adherence to ICAM-1 and fibrinogen. These functions were so far analysed under experimental conditions, where the contribution of CD11b/CD18 and CD11c/CD18 could not be separated. Although very little is known about the features of CR4, it is supposed that the two integrins exert similar functions, since they bind the same ligands. From an evolutionary aspect however it does not seem rewarding to maintain two receptors with similar ligand specificity for the same functions. Therefore our goal is to reveal what separate functions might be exerted by CR3 and CR4 We used both classical and high throughput label free optical biosensor and single cell analysis methods to decipher the distinct role of CD11c. Previously we demonstrated that on human monocyte-derived dendritic cells (MDCs) CD11b is responsible for iC3b mediated phagocytosis, while CD11c is dispensable. In our recent work we analysed how CD11b and CD11c participate in adherence to their ligands. We employed human monocytes, monocyte-derived macrophages (MDMs) and MDCs which highly express CR3 and CR4 and adherence is their natural property. First we determined the exact number of CD11b and CD11c on these cell types by a bead based technique, and found that the ratio of CD11b/CD11c is 1.2 for MDCs, 1.7 for MDMs and 7.1 for monocytes, suggesting that CD11c is most important for MDCs and less for monocytes. By analyzing the kinetics and force of adherence of the different cell types to immobilized fibrinogen ligand, we found that attachment of MDCs is stronger than that of monocytes. Using antibody blocking and RNA silencing techniques we proved that adherence to fibrinogen – the common ligand of CR3 and CR4 – is mediated by CD11c. When we previously analyzed iC3b mediated phagocytosis, we found that blocking CD11c does not impair this function. In contrast to this, in the case of adherence, we found that blocking CD11b even enhances attachment to fibrinogen, suggesting a competition between CD11b and CD11c for this ligand

    Non-identical twins: Different faces of CR3 and CR4 in myeloid and lymphoid cells of mice and men

    Get PDF
    Integrins are cell membrane receptors that are involved in essential physiological and serious pathological processes. Their main role is to ensure a closely regulated link between the extracellular matrix and the intracellular cytoskeletal network enabling cells to react to environmental stimuli. Complement receptor type 3 (CR3, alphaMbeta2, CD11b/CD18) and type 4 (CR4, alphaXbeta2, CD11c/CD18) are members of the beta2-integrin family expressed on most white blood cells. Both receptors bind multiple ligands like iC3b, ICAM, fibrinogen or LPS. beta2-integrins are accepted to play important roles in cellular adhesion, migration, phagocytosis, ECM rearrangement and inflammation. Several pathological conditions are linked to the impaired functions of these receptors. CR3 and CR4 are generally thought to mediate overlapping functions in monocytes, macrophages and dendritic cells, therefore the potential distinctive role of these receptors has not been investigated so far in satisfactory details. Lately it has become clear that a functional segregation has evolved between the two receptors regarding phagocytosis, cellular adhesion and podosome formation. In addition to their tasks on myeloid cells, the expression and function of CR3 and CR4 on lymphocytes have also gained interest recently. The picture is further complicated by the fact that while these beta2-integrins are expressed by immune cells both in mice and humans, there are significant differences in their expression level, functions and the pathological consequences of genetic defects. Here we aim to summarize our current knowledge on CR3 and CR4 and highlight the functional differences between these receptors, involving their expression in myeloid and lymphoid cells of both men and mice

    Stromal Cells Serve Drug Resistance for Multiple Myeloma via Mitochondrial Transfer: A Study on Primary Myeloma and Stromal Cells

    Get PDF
    SIMPLE SUMMARY: Mitochondrial transfer plays a crucial role in the acquisition of drug resistance in multiple myeloma, but its exact mechanism is not yet clear; moreover, overcoming the drug resistance that it causes is also a major challenge. Our research on primary myeloma cell cultures reveals that mitochondrial transfer is bi-directional between bone marrow stromal cells and myeloma cells, occurring via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, whereupon survival and adenosine triphosphate levels increase, while mitochondrial superoxide levels decrease in myeloma cells. These changes and the elevation of superoxide levels in stromal cells are proportional to the amount of incorporated mitochondria derived from the other cell type and to the concentration of the used drug. Although the inhibition of mitochondrial transfer is limited between stromal and myeloma cells, the supportive effect of stromal cells can be effectively averted by influencing the tumor metabolism with an inhibitor of oxidative phosphorylation in addition to chemotherapeutics. ABSTRACT: Recently, it has become evident that mitochondrial transfer (MT) plays a crucial role in the acquisition of cancer drug resistance in many hematologic malignancies; however, for multiple myeloma, there is a need to generate novel data to better understand this mechanism. Here, we show that primary myeloma cells (MMs) respond to an increasing concentration of chemotherapeutic drugs with an increase in the acquisition of mitochondria from autologous bone marrow stromal cells (BM-MSCs), whereupon survival and adenosine triphosphate levels of MMs increase, while the mitochondrial superoxide levels decrease in MMs. These changes are proportional to the amount of incorporated BM-MSC-derived mitochondria and to the concentration of the used drug, but seem independent from the type and mechanism of action of chemotherapeutics. In parallel, BM-MSCs also incorporate an increasing amount of MM cell-derived mitochondria accompanied by an elevation of superoxide levels. Using the therapeutic antibodies Daratumumab, Isatuximab, or Elotuzumab, no similar effect was observed regarding the MT. Our research shows that MT occurs via tunneling nanotubes and partial cell fusion with extreme increases under the influence of chemotherapeutic drugs, but its inhibition is limited. However, the supportive effect of stromal cells can be effectively avoided by influencing the metabolism of myeloma cells with the concomitant use of chemotherapeutic agents and an inhibitor of oxidative phosphorylation

    Adhesion kinetics of human primary monocytes, dendritic cells, and macrophages: Dynamic cell adhesion measurements with a label-free optical biosensor and their comparison with end-point assays

    Get PDF
    Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ in their main functions. These specific functions are, to a considerable degree, determined by the differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles typically reached their maximum at ∼60 min after cell seeding, which was followed by a monotonic signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response, cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result, the molecular layers were characterized by further exploiting the potentials of the biosensor: by measuring the adsorption signal induced during the surface coating procedure, the authors could estimate the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn played a more decisive role in determining cell adherence. To support the cell adhesion data obtained with the biosensor, cell adherence on Fgn-coated surfaces 30–60 min after cell seeding was measured with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2) a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical biosensor is expected to open a window on the hidden background of the immune cell–extracellular matrix interactions

    Conserved and Distinct Elements of Phagocytosis in Human and C. elegans

    No full text
    Endocytosis provides the cellular nutrition and homeostasis of organisms, but pathogens often take advantage of this entry point to infect host cells. This is counteracted by phagocytosis that plays a key role in the protection against invading microbes both during the initial engulfment of pathogens and in the clearance of infected cells. Phagocytic cells balance two vital functions: preventing the accumulation of cell corpses to avoid pathological inflammation and autoimmunity, whilst maintaining host defence. In this review, we compare elements of phagocytosis in mammals and the nematode Caenorhabditis elegans. Initial recognition of infection requires different mechanisms. In mammals, pattern recognition receptors bind pathogens directly, whereas activation of the innate immune response in the nematode rather relies on the detection of cellular damage. In contrast, molecules involved in efferocytosis—the engulfment and elimination of dying cells and cell debris—are highly conserved between the two species. Therefore, C. elegans is a powerful model to research mechanisms of the phagocytic machinery. Finally, we show that both mammalian and worm studies help to understand how the two phagocytic functions are interconnected: emerging data suggest the activation of innate immunity as a consequence of defective apoptotic cell clearance

    The differential role of CR3 (CD11b/CD18) and CR4 (CD11c/CD18) in the adherence, migration and podosome formation of human macrophages and dendritic cells under inflammatory conditions.

    Get PDF
    CR3 and CR4, the leukocyte specific β2-integrins, involved in cellular adherence, migration and phagocytosis, are often assumed to have similar functions. Previously however, we proved that under physiological conditions CR4 is dominant in the adhesion to fibrinogen of human monocyte-derived macrophages (MDMs) and dendritic cells (MDDCs). Here, using inflammatory conditions, we provide further evidence that the expression and function of CR3 and CR4 are not identical in these cell types. We found that LPS treatment changes their expression differently on MDMs and MDDCs, suggesting a cell type specific regulation. Using mAb24, specific for the high affinity conformation of CD18, we proved that the activation and recycling of β2-integrins is significantly enhanced upon LPS treatment. Adherence to fibrinogen was assessed by two fundamentally different approaches: a classical adhesion assay and a computer-controlled micropipette, capable of measuring adhesion strength. While both receptors participated in adhesion, we demonstrated that CR4 exerts a dominant role in the strong attachment of MDDCs. Studying the formation of podosomes we found that MDMs retain podosome formation after LPS activation, whereas MDDCs lose this ability, resulting in a significantly reduced adhesion force and an altered cellular distribution of CR3 and CR4. Our results suggest that inflammatory conditions reshape differentially the expression and role of CR3 and CR4 in macrophages and dendritic cells
    corecore