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Monocytes, dendritic cells (DCs), and macrophages (MFs) are closely related immune cells that differ

in their main functions. These specific functions are, to a considerable degree, determined by the

differences in the adhesion behavior of the cells. To study the inherently and essentially dynamic
aspects of the adhesion of monocytes, DCs, and MFs, dynamic cell adhesion assays were performed

with a high-throughput label-free optical biosensor [Epic BenchTop (BT)] on surfaces coated with

either fibrinogen (Fgn) or the biomimetic copolymer PLL-g-PEG-RGD. Cell adhesion profiles

typically reached their maximum at �60 min after cell seeding, which was followed by a monotonic

signal decrease, indicating gradually weakening cell adhesion. According to the biosensor response,

cell types could be ordered by increasing adherence as monocytes, MFs, and DCs. Notably, all three

cell types induced a larger biosensor signal on Fgn than on PLL-g-PEG-RGD. To interpret this result,

the molecular layers were characterized by further exploiting the potentials of the biosensor: by meas-

uring the adsorption signal induced during the surface coating procedure, the authors could estimate

the surface density of adsorbed molecules and, thus, the number of binding sites potentially presented

for the adhesion receptors. Surfaces coated with PLL-g-PEG-RGD presented less RGD sites, but was

less efficient in promoting cell spreading than those coated with Fgn; hence, other binding sites in Fgn

played a more decisive role in determining cell adherence. To support the cell adhesion data obtained

with the biosensor, cell adherence on Fgn-coated surfaces 30–60 min after cell seeding was measured

with three complementary techniques, i.e., with (1) a fluorescence-based classical adherence assay, (2)

a shear flow chamber applying hydrodynamic shear stress to wash cells away, and (3) an automated

micropipette using vacuum-generated fluid flow to lift cells up. These techniques confirmed the results

obtained with the high-temporal-resolution Epic BT, but could only provide end-point data. In

contrast, complex, nonmonotonic cell adhesion kinetics measured by the high-throughput optical

biosensor is expected to open a window on the hidden background of the immune cell–extracellular

matrix interactions. VC 2016 American Vacuum Society. [http://dx.doi.org/10.1116/1.4954789]
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I. INTRODUCTION

Monocytes (a type of white blood cells, leukocytes)

developed in the bone marrow are pivotal cellular elements

of the innate immune system that can initiate and regulate

immune responses.1 After an initial period of few days moni-

toring foreign substances in the blood stream, monocytes

migrate through the endothelium of the blood vessels to the

neighboring tissues and differentiate into more specialized

dendritic cells (DCs) or macrophages (MFs).2 During their

life cycle, these cells often get into contact with the extracel-

lular matrix (ECM), i.e., thick layers of highly diverse inter-

connected macromolecules. The ECM functions not only as

a mechanical cell scaffold but also as a signaling platform3

which modulates the inflammatory immune response4–7 by

providing various physical and biochemical clues to immune

cells encountering them. For instance, fibrinogen (Fgn),8 an

ECM protein and a ligand for a number of adhesion recep-

tors, often accumulates at inflammation sites and, therefore,

helps immune cells to find places of injury.9 Moreover,

chronic inflammation may lead to the degradation of the

ECM via inflammatory cytokines and proteases, generating

bioactive fragments (for example, RGD-containing peptides)

which influence the activity and function of infiltrating and

resident cells.10

All the fundamental interactions between immune cells

and their surroundings (e.g., other self-cells of an organism,

pathogens, or the biopolymers of the ECM) are predomi-

nantly mediated by a certain set of adhesion receptors

expressed by the cells.11,12 ab heterodimer transmembrane

protein integrins—which are the major receptors anchoring

the cells to the ECM and establishing a connection between

the latter and the cytoskeleton—are particularly deeply

involved in integrating and transducing ECM-provided sig-

nals.13 Furthermore, integrins also function as bidirectional

signaling machines,14 and thus, they tightly control leuko-

cyte migration to the target tissue,15,16 gene expression,17

cell proliferation, differentiation,18,19 and more. The most

abundant integrins expressed by monocytes and monocyte-

derived cells are leukocyte-specific b2-integrins,20,21 espe-

cially aMb2 (also termed as complement receptor 3, Mac-1

or CD11b/CD18) and aXb2 (also termed as complement

receptor 4 or CD11c/CD18). It is long known that the differ-

entiation of monocytes into macrophages and to dendritic

cells is accompanied by alterations in the expression levels

of these integrins.22,23 In the case of immune cells, which

may have various contact partners other than the ECM or

other self-cells, integrin expression levels shape cell-type-

specific functions to a considerable degree. Here, we aimed

at shedding light on the differences in the time-dependent

adhesive behavior of monocytes, DCs, and MFs.

In the past decades, the field has attracted an increasingly

broad scientific interest, and the interaction of either mono-

cytes, MFs, or DCs with various proteins (including fibrino-

gen,9,24 collagen-I,25 laminin,26 serum proteins,27,28 and

biomimetic peptides based on functional sites of fibronec-

tin29,30) have been investigated. However, lacking the

appropriate technique, the overwhelming majority of previ-

ous studies failed to capture the inherent and essential

dynamics of immune cell adhesion, and characterized it only

at a single time point.

When it comes to measuring the kinetics of cell adhesion,

nor the techniques based on direct measurements of the a-

dhesion force (e.g., variants of atomic force microscopy,31,32

automated micropipette,24 and traction force micros-

copy33,34), neither optical microscopy for the visualization

of cells or their adhesion-associated molecular structures

(e.g., wide-field, confocal, total internal reflection micros-

copies35) can compete with cell-based label-free biosensors

which enable the high temporal-resolution monitoring of the

activity of surface-adhered cells. Evanescent field-based
optical biosensors, including surface plasmon resonance

(SPR),36,37 optical waveguide lightmode spectroscopy

(OWLS),28,38–40 photonic crystal biosensors,41 grating cou-

pling interferometry,42,43 and resonant waveguide grating

(commonly recognized as Epic)44,45 biosensors, are consid-

ered to be especially straightforward means to monitor

surface adhesion. First, they are sensitive only in a �150 nm

thick layer closest to the substratum, exactly where establish-

ment and maturation of anchorage and spreading occurs.

Second, they are closer to a hypothetical zero-perturbation

system than other adhesion-measuring techniques in- or out-

side the family of label-free biosensors. Third, their response

integrating changes in both the size of the contact area and

the optical density therein (dependent on the extents of actin

polymerization, integrin clustering, adhesion complex

formation, and maturation) is proportional to the strength of

adhesion.40 Nonetheless, the permeation of such biosensors

to adhesion science has long been delayed partly due to the

lack of high throughput in first-generation devices (OWLS

and SPR), which is practically a requirement in cell research.

High throughput is increasingly critical for studying primary

immune cells, e.g., since they are particularly sensitive and

responsive to changes in their environment, and since mono-

cytes can undergo spontaneous differentiation.

Here, we utilized a high-throughput label-free optical bio-

sensor to monitor cell adhesion and spreading in real time

[Fig. 1(a)]. In our former study, we demonstrated the poten-

tials of a first-generation optical biosensor, namely, the

OWLS, to measure the adhesion kinetics of primary mono-

cytes in the presence of varying serum concentrations.28

However, single-channel OWLS lacked the throughput

which was necessary to simultaneously measure the adhe-

sion of different types of cells on various surfaces. Thus,

here we used the Epic BenchTop (BT), a microplate-based

device45 relying on the same detection principle as OWLS,

to study the adhesion kinetics of monocytes isolated from

human blood and that of in vitro differentiated, monocyte-

derived macrophages (MDMs), and monocyte-derived den-

dritic cells (MDCs). Specific adhesion was investigated on

substrata coated with either fibrinogen, or a biomimetic

copolymer, PLL-g-PEG-RGD.

To support the biosensor data, cell adherence 30–60 min

after cell seeding was further tested with three complementary
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techniques, i.e., with (1) a classical, static adherence assay, (2) a

flow chamber-based assay, and (3) an automated micropipette-

based assay [Figs. 1(b)–1(d)].

II. MATERIALS AND METHODS

A. Monocyte isolation from human blood

Buffy coat was obtained from healthy donors and pro-

vided by the Hungarian National Blood Transfusion Service.

All experiment protocol was approved by the “Committee of

Science and Research Ethics” of the “Medical Research

Council” of Hungary (“ETT TUKEB”). The methods were

carried out in accordance with the approved guidelines of

the Declaration of Helsinki.

Peripheral blood mononuclear cells were isolated from

buffy coat by density gradient centrifugation on Ficoll-Paque

(GE Healthcare). Unlabeled monocytes were isolated by

negative magnetic separation using the Miltenyi Monocyte

Isolation kit II (Miltenyi) according to the manufacturer’s

instructions. Briefly, nonmonocytes were indirectly magneti-

cally labeled using a cocktail of biotin-conjugated antibodies

and antibiotin MicroBeads. Highly enriched unlabeled mono-

cytes were obtained by depletion of the magnetically labeled

cells. Cells were cultivated in the CellGro GMP DC

(CellGenix GmbH, Freiburg, Germany) serum-free medium

at 37 �C, 5% CO2 atmosphere. To avoid spontaneous cell

attachment to the dish, cells were cultured in Teflon-coated

flasks.

B. Differentiation of monocytes into dendritic cells
and macrophages

To generate MDCs in vitro, isolated monocytes were

cultivated in CellGro serum-free DC medium (CellGenix

FIG. 1. Schematic illustration of the working principle of the techniques employed to characterize immune cell adherence (not to scale). Panel (a): the detection

principle of the high-throughput optical biosensor. The wavelength-tuned illuminating light (illustrated as ingoing orange/red/plum waved arrows) is incoupled

into the planar waveguides (i.e., sensing units) of the biosensor microplate. The illuminating light penetrates in a �150 nm thick layer closest the sensor sur-

face, and thus probes the local refractive index. However, at given refractive index relations, only a single wavelength is able to propagate in the waveguide

layer (such guided light is illustrated as an orange/red/plum zigzag line in the different cases). During cell spreading, an increasingly bigger portion of the cell

body enters into the layer probed by the illuminating light (from top to bottom illustrated as increasingly bigger contact areas colored in orange/red/plum),

altering the local refractive index. As a consequence, waveguiding is ceased at the original wavelength k (illustrated in orange, at the top), but resumes at

wavelength k0 6¼ k (illustrated in red, in the middle), then at k00 6¼ k0 6¼ k (illustrated in plum, at the bottom). After a few micrometers of propagation, light is

outcoupled from the waveguide (illustrated as outgoing waved arrows), so its wavelength can be detected. Thus, cell spreading can be monitored in a label-

free manner as a change in the wavelength of the guided light ðDkÞ. Panel (b): adherence measurement in a classical end-point assay. Cells are labeled with a

fluorescent dye (illustrated as cells colored in red instead of green), then seeded and incubated on the surface of interest. After incubation, unattached cells are

removed via gentle washing, and the number of attached cells is determined by comparing their fluorescent intensity (I) to that measured on a reference surface

which was not washed after incubation (exciting and fluorescent lights are illustrated in blue and green, respectively). Panel (c): adherence measurement in a

flow chamber (rectangular microfluidic channel). Cells introduced into the flow chamber are allowed to adhere to its bottom. After incubation, the flow cham-

ber is placed on a microscope to visualize the cells, then a laminar fluid flow [resulting in a parabolic flow velocity profile v(z) exhibiting a shear stress s on

cells] is applied for a couple of seconds. Flow rate is increased in several steps until most cells are removed. Adherence is characterized as the ratio of adherent

cells at a given flow rate. Panel (d): adherence measurement with the automated micropipette. The computer-controlled micropipette uses a vacuum-generated

fluid flow (with flow rate v, streamlines illustrated as red arrows) to test the adherence of single cells. Estimated lifting force (F, black arrow) acting on cells

can be determined with computational methods. Adherence is characterized as the ratio of adherent cells at a given lifting force. Panel in the middle: temporal

evolution of cellular adherence is usually well described with a sigmoid function. Importantly, among the presented techniques, only the label-free biosensor

enables the kinetics of cell adhesion to be monitored [illustrated for three time points in Fig. 2(a)].
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GmbH) supplemented with 100 ng/ml recombinant human

granulocyte/macrophage-colony-stimulating factor (GM-

CSF, R&D systems) and 15 ng/ml recombinant human

interleukin-4 (R&D systems) for 5 days in 24-well cell

culture plates (Corning) at a cell density of 5� 105/ml. To

generate MDMs, cells were cultivated as MDCs except that

only GM-CSF cytokine was added to the culture. Cytokines

were supplemented every 3 days.

To identify MDCs and MDMs, cultures were checked

with flow cytometry based on the fact that MDCs are

CD14�, while MDMs are CD14þ cells. Furthermore, we

analyzed the cell morphology in the cultures by inverted

microscope. MDCs were floating at day 5 of differentiation

and had several visible dendrites. Macrophages were more

attached to the culture plate, had a more rounded shape as

compared to MDCs, and had no dendrites.

For the adhesion experiments, cells were harvested by

pipetting after vigorously suspending the cultures. MDMs

only loosely adhered to the bottom of the culture dish, while

MDCs did not adhere to it at all; thereby, no scraping was

needed to detach the cells. Monocytes were used immedi-

ately after separation.

C. Coating solution preparation and surface coating
procedure

The synthetic copolymers, poly(L-lysine)-graft-poly(ethylene

glycol) (PLL-g-PEG), and its RGD-functionalized counterpart,

PLL-g-PEG/PEG-GGGGYGRGDSPG (simply referred to as

PLL-g-PEG-RGD throughout this work), were obtained as

powders (SuSoS AG). The materials were stored at �20 �C
until use. Each powder was then dissolved in 10 mM 4-(2-

hydroxyethyl)-1-piperazine ethanesulfonic acid (HEPES,

from Sigma-Aldrich Chemie GmbH) at pH 7.4 to obtain

coating solutions with a concentration of 250 lg/ml. These

were then sterile-filtered and stored at 4 �C for a maximum

of 2 weeks.

Fgn (340 kDa, from Merck KGaA) was dissolved in ultra-

pure H2O and stored as 36 mg/ml stock solutions at �80 �C
until use. After gentle thawing, this was diluted in phosphate

buffered salt solution (PBS, Sigma-Aldrich) to a final con-

centration of 10 lg/ml.

Surface coatings were created by physisorption from the

appropriate coating solutions. First, designated surfaces were

treated with a 10 lg/ml Fgn coating solution, and incubated

for 1 h at 37 �C (except for the case of the biosensor, where

this step was preceded by a baseline read with PBS in the

wells). The Fgn solution was then removed, and surfaces

were rinsed three times with PBS. Next, unoccupied surface

areas on Fgn-coated surfaces were passivated with PLL-g-

PEG, and surfaces not treated yet were coated with either

PLL-g-PEG for negative control, or with PLL-g-PEG-RGD

(250 lg/ml, 30 min, room temperature). These solutions

were then removed, and surfaces were rinsed three times

with PBS.

The proteins and the peptide ligate used in the experi-

ments were not of bacterial source; therefore, the probability

of their lipopolysaccharide (LPS) contamination was very

low—which is a crucial question, since monocytes, MDMs,

and MDCs all express TLR4, and hence, they are susceptible

to LPS. Nonetheless, we tested whether the components used

for the assays induced the activation of the cells by measuring

their tumor necrosis factor alpha (TNF-a, an inflammatory

cytokine) production with an enzmye-linked immunosorbent

assay (TNF-a DuoSet ELISA was obtained from R&D). We

found that neither of the employed substances induced TNF-a
production of monoctyes, MDMs, or MDCs. Moreover, we

tested the different coatings using a modified U937 monocy-

toid cell line that produces green fluorescent protein (GFP)

when activated with the protein nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-jB).46 Activation of

these cells was measured with fluorescent microscopy, and

these experiments further confirmed that no NF-jB activation

occurred under the used experimental conditions.

D. High-throughput label-free detection
with the Epic BT

Epic BT is a next-generation biosensor enabling high-

throughput label-free detection at a solid–liquid interface [Fig.

1(a)]. Epic BT accepts 96- or 384-well SBS-format Epic

microplates. The bottom of each microplate serves as an opti-

cal waveguide, in which the illuminating light can be coupled

via optical gratings integrated at the central positions of the

wells. Light beams in the waveguide interfere with each other;

destructive interference precludes waveguiding, while con-

structive interference leads to resonance and to the excitation

of a guided lightmode. The latter can be achieved only at a dis-

crete illuminating wavelength, called resonant wavelength (k).

The guided lightmode generates an exponentially decaying

evanescent field in a 100–200 nm width layer over the sensor,

which probes refractive index (RI) variations at this inter-

face.40,45 Any process accompanied by RI-variations in this

layer (bulk RI change, molecular adsorption, cell spreading, or

dynamic redistribution inside the attached cells) untunes the

resonance by altering the phase-shift of the propagating light

when it is reflected from the interface. This leads to destructive

interference at the original wavelength and to a constructive

interference at a slightly different wavelength, i.e., waveguid-

ing resumes at an illuminating wavelength k0 6¼ k. The pri-

mary output of the Epic BT is the shift of the resonant

wavelength, Dk ¼ k0 � k. This is monitored in real time, ena-

bling kinetic measurements. The biosensor response is directly

proportional to the strength of adhesion.40

In practice, Epic BT uses a broadband light source and a

tunable optical filter to simultaneously interrogate all wells

of the microplate every 3 s by sweeping the wavelength from

823 to 838 nm with a 0.25 pm wavelength resolution. The

guided wavelength is outcoupled by the same grating used

for incoupling, and the resonant wavelength distribution

within each well is imaged with a spatial resolution of

�90 lm using a CCD camera. The created two-dimensional

resonant wavelength map allows patterns in single wells

(corresponding to areas of, e.g., aggregated spread cells, or
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dead ones) to be identified and permits data filtration to

improve assay quality.47

E. Dynamic cell adhesion assay on the Epic BenchTop
system

The assay medium for cell spreading experiments was pre-

pared by supplementing the CellGro GMP DC (CellGenix

GmbH) serum-free medium with 20 mM HEPES (from

Sigma-Aldrich Chemie GmbH), 0.25 lg/ml amphotericin,

and 40 lg/ml gentamycin.

First, a baseline was established with the assay medium

in the wells. Meanwhile, cells were centrifuged at 380 g for

5 min, and the cell pellet was resuspended in fresh assay

medium with gentle pipetting. Cells were then counted in a

hemocytometer, and �8000 cells in a volume of �50 ll

were added to the sensor wells already containing 20 ll

assay medium. All experiments were done in triplicates in

three different wells at room temperature. Averaging every

five subsequent data points, the effective sampling rate was

1/15 s�1.

In all the experiments carried out with the biosensor, 384-

well uncoated Epic microplates (Corning) were used. Wells

unused in an experiment were covered with a special alumi-

num foil (Corning) to prevent their contamination. Except for

the first step of the surface coating procedure, all steps of the

biosensor experiments were conducted at room temperature.

F. CFDA-SE labeling of cells

Directly before the classical adherence measurement (see

Sec. II G), cells at a density of 106 cells/ml were freshly

labeled with 10 lM carboxyfluorescein diacetate succini-

midyl ester (CFDA-SE, from Molecular Probes) fluorescent

dye. Briefly, cells were mixed with appropriate dye concen-

tration and incubated for 10 min at room temperature in

dark. Then, they were washed three times with phosphate

buffered saline (PBS) containing 5% fetal calf serum (FCS)

to remove excess dye.

G. Classical end-point adhesion assay

In classical end-point adherence assays, the ratio of

adherent cells was accessed by measuring the fluorescent

intensity of adherent populations relative to that of an appro-

priate control [Fig. 2(b)].

Wells of a 96-well polystyrene plate (Greiner) were

coated according to the protocol described in Sec. II.

Subsequently, wells were washed two times with PBS, and

500 000 CFDA-SE-labeled cells (for the labeling protocol,

see Sec. II F) suspended in 100 ll Rosewell Park Memorial

Institute medium (RPMI, obtained from Sigma-Aldrich) me-

dium supplemented with 10% FCS (Gibco) were pipetted

into each well. Cells were allowed to adhere for 1 h at 37 �C,

5% CO2 atmosphere. Afterward, fluorescence intensity was

measured with a Thermo Fluoroskan Ascent microplate

reader (Thermo Scientific) to determine the maximal fluores-

cence in each well. Then, wells were washed with warm

RPMI-10% FCS two times to remove all unbound cells.

Finally, wells were loaded with 100 ll RPMI-10% FCS, and

fluorescence intensity was measured again to determine the

fluorescence of adhered cells. The amount of adhered cells

was determined by comparing the fluorescence intensity in

each well before and after washing.

H. Flow chamber-based adhesion assay

In flow-chamber based assays, well-defined shear stresses

were applied to test the adherence of a population of cells

[Fig. 2(c)], which was then characterized by the ratio of the

adherent cells to the total number of cells initially seeded

(2� 4� 106 cells/ml).

We used six-channel plastic flow chambers (Ibidi, l-

Slide VI 0.1) in the experiments. The channels were coated

with Fgn and/or passivated with PLL-g-PEG as detailed in

Sec. II. Then, cells suspended in RPMI-10% FCS were

introduced into the precoated channels and incubated for

30 min at 37 �C in 5% CO2 atmosphere. After incubation,

the flow chamber was placed on an inverted phase contrast

microscope (Olympus CKX41, 4� objective lens) to moni-

tor the detachment of cells in the flow. A 50 ml syringe con-

trolled by a syringe pump (New Era NE-1000) was filled

with Hank’s buffered salt solution, and it was connected to

the l-Slide channel via polytetrafluoroethylene tubing. The

flow rate was increased in several steps as long as most of

the cells were removed from the coated surface. Flow was

applied for 10 s at each step. Images were captured to deter-

mine the number of cells remaining on the surface before

initiating the flow and after each step.

I. Automated micropipette-based adhesion assay

The recently introduced automated micropipette utilizes a

precisely controlled, vacuum-generated fluid flow to test the

adherence of single cells [Fig. 2(d)].24 Hydrodynamic lifting

force acting on cells can be estimated from the experimen-

tally set vacuum values by simulating the fluid flow in the

micropipette.24 Increasing the vacuum in several steps, cellu-

lar adherence is characterized by the ratio of still adherent

cells to the total number of cells initially seeded. (Individual

cells picked up by the micropipette can be automatically

deposited in submicroliter drops for further analysis, see

Ref. 48.)

A constrained region of a 35 mm plastic tissue culture

petri dish (Greiner) was coated with Fgn,24 then the entire

bottom of the Petri dish was treated with PLL-g-PEG

according to the coating protocol described in Sec. II. Next,

75 000 cells suspended in RPMI-10% FCS were seeded into

the dish, and incubated for 30 min at 37 �C in 5% CO2

atmosphere. Subsequently, floating cells were gently washed

away, and cells attached to the surface were scanned on a

motorized inverted microscope and recognized by computer

vision. A glass micropipette with an inner diameter of 70 lm

attached to a vertically motorized micromanipulator was

maneuvered to each detected cell one by one automatically.

Cell adhesion was probed by applying a precisely controlled

fluid flow through the micropipette. The adhesion force of
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cells could be accurately measured by repeating the pick-up

process with increasing vacuum.

J. Statistical analysis

All adhesion data shown in the figures were analyzed

with two-sample unpaired (one-tailed) t-tests. Differences

were considered statistically significant if p <0:05.

III. RESULTS AND DISCUSSION

Here, we used a microplate-based high-throughput optical

biosensor, the Epic BT (see Fig. 1 and Sec. II), to study the

adhesion kinetics of monocytes isolated from human blood

and that of in vitro differentiated MDMs, and MDCs (for the

isolation and differentiation protocols, see Secs. II A and

II B). Specific adhesion was investigated on substrata coated

with either fibrinogen, or a biomimetic copolymer, PLL-

g-PEG-RGD (for the coating protocols, see Sec. II C).

The high-throughput optical biosensor [Fig. 1(a)] enabled

the kinetics of the adhesion and spreading of a cell popula-

tion to be monitored with high temporal resolution and

without the need to incorporate labels that could potentially

disturb cell behavior.

A. Leukocyte adhesion often exhibit nontrivial kinetics

Spreading kinetics obtained by monitoring the activity of

different cell types seeded onto different substrata are shown

in Fig. 2. First, note that nonspecific adhesion could be effec-

tively blocked by precoating the sensor surface with the bio-

logically inactive PLL-g-PEG. In contrast, surfaces coated

with either Fgn or PLL-g-PEG-RGD induced specific cell

adhesion. The kinetics of spreading was similar for all three

cell types; a typical adhesion kinetic profile obtained its

maximum around 60 min after cell seeding, then the signal

started to slowly decrease. This latter characteristic was

unexpected, as normally (i.e., in the absence of treatment,

stimulation, perturbation) the spreading curve of most cell

types resembles a symmetrical sigmoid with a stabile plateau

at equilibrium.40,45,49,50 The extent of signal decrease rela-

tive to the maximum biosensor signal showed strong depend-

ence on donors, as well as on cell types. The signal produced

by monocytes and MDCs exhibited more prominent relative

FIG. 2. Time-dependent adherence of monocytes, MDMs, and MDCs on PLL-g-PEG- and Fgn-coated surfaces, as was measured with the Epic BT in DCA

assays. Representative kinetic profiles provoked by adhering and spreading monocytes, MDMs, and MDCs are shown in panels (a)–(c), respectively.

PLL-g-PEG-coated surfaces were used as negative control. The background-corrected maximum biosensor signals induced by different cells on PLL-g-PEG-

RGD- and Fgn-coated surfaces are shown in panel (d). In all panels data are shown as means, error bars represent standard deviations. * indicates statistical

significance with p < 0:05 (t-test).
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decrease than that given by MDMs. Signal decrease was

observed not only when the cells were cultured and assayed

in serum-free medium, but also when kept in 10% FCS-

RPMI (data not shown). The nontrivial kinetics implies com-

plex adhesive behavior, probably with multiple cellular

activities acting in concert and having partially opposing

effects on total cell adherence and spreading. For instance,

podosomes—the multifunctional adhesive and invasive

structures that are particularly prominent in the monocytic

lineage—are deeply engaged in both cell–substrate adhesion

and matrix degradation.51 Thus, we can speculate that within

the first hour after cell seeding the biosensor signal was

dominated by the spreading process, but then another effect

turned on. This could be related to the transition of the cell

shape from rounded to more complex shapes with long pro-

trusions suggested by the imaging of cells during spreading

(data not shown).

B. Monocytes, macrophages, and dendritic cells differ
in their cell adherence

As expected from differences in cell size (the diameter of

unspread monocytes are approximately half the diameter of

MDCs and MDMs) and in adhesion receptor expression lev-

els,22 differentiated cells induced larger biosensor signals

(indicating firmer adherence) than monocytes. Notably, these

cell-type-related differences in cell adherence were more

pronounced on PLL-g-PEG-RGD, than on Fgn-coated surfa-

ces (Fig. 2).

Figure 2 also indicates that the maximum biosensor signal

given by MDCs was larger both on Fgn- and PLL-g-PEG-

RGD-coated surfaces than that provoked by MDMs. This

result is in accordance with previously published data. First,

the most abundant integrins on the surface of both cell types

are leukocyte-specific integrins (especially, aMb2 and aXb2

heterodimers, among which aMb2 dominates), and it seems

that MDCs have higher overall expression levels of such

adhesion receptors than MDMs.22 More recently, we tested

the adherence of MDCs and MDMs to Fgn with a computer

controlled micropipette, and found that a larger sucking

force was necessary to remove MDCs from the surface than

to remove MDMs.24

C. Fibrinogen-coated surfaces promote cell adhesion
more effectively than PLL-g-PEG-RGD layers,
although the latter presents more RGD motifs

All three cell types induced a markedly larger biosensor

signal on Fgn-coated surfaces than on PLL-g-PEG-RGD

(Fig. 2). To interpret this result, we characterized both

surfaces by further exploiting the potentials of the biosensor.

By measuring the biosensor signals induced during the sur-

face coating procedure, one can estimate the surface density

of adsorbed molecules and, thus, the number of binding sites

potentially presented for the adhesion receptors.

During adsorption, both PLL-g-PEG-RGD and Fgn

induced a wavelength shift of �420 pm (data not shown).

Previously, we have used the dual-mode OWLS, enabling the

adsorbed surface mass density (M) to be determined, as a

complementary technique to calibrate the surface sensitivity

of the Epic BT. We have established the following relation:52

DM � Dk� 3:1� 10�1ng=cm2 pm: (1)

Hence, the measured �420 pm wavelength shift corresponds

to a surface mass density of �130 ng=cm2. The number of

molecules on the surfaces can be straightforwardly deter-

mined by using this latter data and the molecular weights of

PLL-g-PEG-RGD (77.1 kDa) and Fgn (340 kDa). To calcu-

late the number of binding sites potentially presented to

cells, however, the number of binding sites per molecule

has to be also known. Due to its design, surface-absorbed

PLL-g-PEG-RGD has a single sequence that cells can inter-

act with; the RGD-motif (an average of 3.1 RGDs are pres-

ent per molecule). This tripeptide is recognized by a specific

subgroup of integrins, among which leukocytes express

a5b1 and a5b3 .53 However, the most abundant integrins

expressed by leukocytes (aXb2 and aMb2) are not involved

in RGD-binding. (Albeit in whole cell experiments RGD-

containing peptides could inhibit aMb2 function, later it has

been shown that this was not due to a direct interaction

between aMb2 and RGD, but rather due to crosstalk between

aMb2 and receptors that do actually recognize RGD.54) In

contrast, fibrinogen, a key regulator of inflammation in

disease,55 has multiple additional binding sites for a variety

of cell adhesion receptors.8 First, let us consider its RGD

motifs only: a single Fgn molecule has a total number of

four RGDs (2� 2 per homodimer, among which the role of

two RGDs in cell adhesion remains mostly unclear).53 From

these data ensues that the surface density of RGD motifs

was 340=77:1 � 3:1=4 � 3:4 times larger in the PLL-

g-PEG-RGD-layer than in the Fgn-layer. Nonetheless, Fgn

was more efficient in promoting cell spreading than PLL-

g-PEG-RGD. Therefore, in Fgn not the RGD motifs, but

other binding sites8 played the decisive role in determining

cell adherence. For example, aMb2, the key Fgn-binding

integrin expressed by monocytes, MDCs, and MDMs, rec-

ognizes numerous sequences on Fgn.56,57 Among these, the

so-called P2 sequence (amino acids c373–395) is probably

the most important,53 but various sequences can form a

complex aMb2-binding site with an activity depending on

the availability and exposure of its composing elements.57

aXb2, the second most important Fgn-receptor of leuko-

cytes, has a main binding site at the N-terminal domain of

the Fgn a chain, and it also binds the P2 sequence.53

In summary, although the surface density of RGD motifs

was lower on Fgn- than on PLL-g-PEG-RGD-coated surfa-

ces, it is not surprising that cell adhesion was stronger on the

former than on the latter. First, the RGD-motifs in Fgn are

presumably in a more favorable conformation for binding

than in PLL-g-PEG-RGD.45 Second, Fgn has numerous

binding sites other than RGD motifs, and thus potentially

much more adhesion receptors are involved in mediating

cell adhesion and spreading on Fgn than on PLL-g-PEG-

RGD.
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D. Results obtained with three complementary
techniques support the biosensor data, but are less
information-rich

Beside the dynamic cell adhesion (DCA) assay, cell ad-

herence 30–60 min after cell seeding was tested with three

additional complementary techniques, i.e., with (1) a classi-

cal, static adherence assay, (2) a flow-chamber based assay,

and (3) an automated micropipette-based assay [Figs.

1(b)–1(d)]. They offer specific advantages. The static adher-

ence assay (see Secs. II G–II I) is the easiest and fastest to

carry out, but fluorescent labeling may interfere with cell

behavior and the manual washing step limits the precision of

the measurement. With the flow-chamber (see Sec. II H),

leukocyte adherence can be tested in a well-defined shear

flow, with which the shear flow in blood vessels can be mod-

eled (this is less relevant for MDCs and MDMs, since they

typically reside in the tissues). The automated micropipette,

a powerful cell sorting technique (see Sec. II I), can probe

the force necessary to detach individual cells from the sur-

face. Note, however, that the temporal window in which the

flow chamber and automated micropipette techniques can

test cell adherence is limited, as very strongly attached cells

cannot be removed without damaging the cells (e.g., the

plasma membrane is torn before breaking the bonds between

the adhesion receptors and their ligands58). Moreover, a

common caveat associated with all three methods is that

they yield only end-point data.

All three techniques yielded very similar results regarding

the relative adherence of the different cell types on Fgn (Fig.

3), although assay conditions could not be adjusted to be

exactly the same (see Secs. II E and II G–II I). Most impor-

tantly, cells were preincubated for 1 h before the classical end-

point measurement, while preincubation time was only 30 min

in the flow chamber and micropipette assays (due to the lim-

ited temporal window of these techniques). Still, prominent

differences were observed in the adherence of different cell

types both in the flow chamber and the automated micropipette

assays (Fig. 3). The column plot summarizing the biosensor

results in Fig. 2 compare the maximum of the biosensor signals

for each experimental condition. In accordance with biosensor

data, the results obtained with the complementary techniques

suggest that cell types could be ordered by increasing adher-

ence as follows: monocytes, MDMs, and MDCs. In general,

data gained with complementary techniques showed larger dif-

ferences among the adherence of the three cell types as the

biosensor data did. Note, however, that in addition to the dif-

ferences in measuring methods, some details of the assay con-

ditions also differed (e.g., contrasting the protocol followed

with complementary techniques, the assay medium did not

contain serum, and cells were not preincubated at 37 �C in the

biosensor experiments), which could account for such

discrepancies in results. Taking these into consideration, we

judge that biosensor data and data gained with the other three

techniques are in nice agreement with each other, demonstrat-

ing the assay-independent robustness of the observed variances

in the adherence of monocytes, MDMs, and MDCs.

Importantly, none of the techniques but the Epic BT

enabled the kinetics of cell adhesion and spreading to be

monitored and, thus, the adhesive behavior to be impeccably

characterized. This proved to be of fundamental advantage,

as the investigated immune cells often produced unexpected,

nontrivial adhesion kinetic profiles (not symmetrical sigmoid

curves with a stable plateau at equilibrium). The biosensor

signal started to gradually decrease after �60 min of cell

seeding (Fig. 2), which suggests that multiple cellular activ-

ities may act in concert, and the measured cell adherence

and spreading is a net result of their partially opposing

effects.

IV. CONCLUSIONS

The adhesion of monocytes, MFs, and DCs to other cell

or to the extracellular matrix plays cardinal roles in immune

function, health, and disease. These three cell types all have

different main functions that are, to a considerable degree,

determined by the differences in adhesive behaviors.

However, the adhesion and spreading of monocyes, MDMs,

and MDCs has not hitherto been compared in a comprehen-

sive way, still less with an insight to the inherent dynamics
of the process.

In order to evaluate differences between the adherence of

primary human monocytes, MDMs, and MDCs, we enrolled

four different techniques in this study. The classical fluores-

cence reader-based adherence assay, the flow chamber

technique, and the automated micropipette all have their

respective advantages, but as a drawback, they yield only

end-point data and, thus, can only imperfectly characterize

the inherently dynamic process of cell adhesion. In contrast,

the Epic BT evanescent-field-based label-free optical biosen-

sor enabled the high-temporal-resolution monitoring of cell

adhesion and spreading. Kinetic monitoring revealed that

these immune cells, especially monocytes and MDCs, exhibit

a complex, unexpected adhesive behavior. The biosensor sig-

nal reached its maximum 1 h after cell seeding, and then it

started to gradually decrease. Such a behavior has not been

observed previously with other cells types. Nontrivial adhe-

sion and spreading kinetics suggests that multiple cellular

activities may act in concert, which have partially opposing

effects on total cell adherence and spreading. Indeed, podo-

somes (multifunctional adhesive and invasive structures par-

ticularly prominent in the monocytic lineage) are deeply

engaged in both cell–substrate adhesion and matrix degrada-

tion and, thus, may be partially responsible for the nonmono-

tonic biosensor signals. The decreasing signals, observed

more prominently in the case of monocytes and MDCs, might

also reflect that these are highly migratory cell types.

Exploiting the high-throughput of the biosensor, we could

measure the adhesion and spreading of monocytes, MDMs,

and MDCs on substrata coated with different molecules.

Fibrinogen, an important molecular modulator of immune

cell behavior, and PLL-g-PEG-RGD, a simple molecular

construct which can specifically induce cell adhesion while

blocking nonspecific adsorption, were used as models to
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FIG. 3. Adherence of monocytes, MDMs, and MDCs, as was determined with three different techniques complementary to the DCA assays. Top left panel:

ratio of adherent cells on Fgn-coated surfaces, as was determined in the classical end-point adhesion assay (see Sec. II G). Cells were preincubated

(37 �C, CO2) in RPMI-10% FCS for 60 min prior to measurements. Top right panel: schematic illustrating the typical spread morphology of the three

investigated cell types. Middle panels: ratio of adherent cells on Fgn-coated surfaces, as was determined in the flow chamber assay (see Sec. II H). Cells

were preincubated (37 �C, CO2) in RPMI-10% FCS for 30 min prior to experiments. Left and right subpanels show the ratio of adherent cells at shear

stresses s ¼ 0 Pa and s ¼ 128 Pa, respectively. Bottom panels: cell adherence on Fgn-coated surfaces, as was determined in the automated micropipette

assays (see Sec. II I). Cells were preincubated (37 �C, CO2) in RPMI-10% FCS for 30 min prior to experiments. Left subpanel shows the ratio of adherent

cells after gentle washing, as was determined based on microscope images. Right subpanel shows the ratio of adherent cells after the application of lifting

force (F ¼ 1:95 lN for monocytes, and F ¼ 1:81 lN for MDMs and MDCs) with the micropipette. Data in all panels are shown as background-corrected

means (PLL-g-PEG surfaces were used as negative control), error bars represent standard deviations.* indicates statistical significance with p < 0:05

(t-test).
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create cell-adhesive molecular coatings. According to the

biosensor results, cells adhered more firmly on Fgn- than on

PLL-g-PEG-RGD-coated surfaces. To interpret these results,

we characterized the prepared molecular layers by further

exploiting the potentials of the biosensor. By measuring the

adsorption signal induced during physisorption from the

coating solutions to the biosensor wells, we could estimate

the surface density of molecules and, thus, the number of

binding sites potentially presented for the adhesion recep-

tors. Cells adhered and spread more prominently on Fgn-

than on PLL-g-PEG-RGD-coated surfaces despite the fact

that the latter presented several times more RGD motifs.

Thus, Fgn with its various non-RGD binding sites was able

to better promote cell adhesion and spreading, than the sim-

ple PLL-g-PEG-RGD.

Furthermore, the results obtained with the different techni-

ques also demonstrate that there are significant differences

between the adhesion of the three cell types on Fgn.

Monocytes were found to be the less adhesive than MDMs

and MDCs. Furthermore, MDCs adhered stronger than

MDMs; this is in accordance with the fact that MDCs have

larger expression levels of b2 integrins than MDMs.22 Hence,

it seems that the expression levels of b2 integrins fundamen-

tally influence the adhesion capacity of these immune cells.

The optical biosensor we used is a robust, yet simple-

to-use instrument. It may become a general tool for the inves-

tigation of the interaction between adherent immune cells and

ECM proteins (see Introduction, for examples).

Meanwhile, several companies and academic research labs

continue to invest in further developments, and hence, the

spectrum of commercially available label-free optical biosen-

sors is expected to widen in the forthcoming years. An instru-

ment capable of resolving dynamic mass redistributions at the

subcellular level59,60 would enable the behavior of individual

cells to be monitored and thus cell-to-cell variations in a

seemingly homogeneous population to be studied. A biosen-

sor combining high-throughput detection with multimode

waveguides could be used for the depth profiling of cell re-

fractive index variations,39 so the direction of dynamic mass

redistributions inside cells could be determined. High-

throughput label-free biosensors equipped with flow-through

microfluidics61,62 would enable the real-time monitoring of

cellular mechanotransduction and could make many cellular

assays more biologically relevant by enabling (1) a more con-

trolled stimulation of cells with different substances, and (2)

cell behavior to be studied under flow, so the in vivo condi-

tions of red blood cells, various immune cells, and tumor cells

circulating in the blood stream could be better approximated.

Prompting a more widespread recognition and exploitation of

label-free optical biosensors, handheld63 and smartphone-

based64 instruments for point-of-care diagnostics are also at

our doorstep, which will surely find cellular applications.
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